Skip to main content

Robot-Assisted Radical Nephrectomy and Vena Cava Thrombus Management

  • Chapter
  • First Online:
Robotic Urologic Surgery
  • 953 Accesses

Abstract

Radical nephrectomy (RN) is a treatment option for high-risk renal cell carcinoma (RCC). With the expansion of partial nephrectomy indications, the usage of RN is not as frequent as previous. Robot-assisted radical nephrectomy (RARN) overcomes many technical and ergonomic difficulties associated with conventional laparoscopic procedures. RARN has an important therapeutic role in locally advanced RCC, cytoreductive nephrectomy (CN) in metastatic RCC, and RN with concurrent lymph node dissection (LND) and/or inferior vena cava (IVC) thrombectomy. We have described the related theory and techniques of RARN and robotic IVC thrombectomy in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clayman RV, Kavoussi LR, Soper NJ, Dierks SM, Meretyk S, Darcy MD, et al. Laparoscopic nephrectomy: initial case report. J Urol. 1991;146(2):278–82.

    CAS  PubMed  Google Scholar 

  2. Klingler DW, Hemstreet GP, Balaji KC. Feasibility of robotic radical nephrectomy—initial results of single-institution pilot study. Urology. 2005;65(6):1086–9.

    PubMed  Google Scholar 

  3. Anele UA, Marchioni M, Yang B, Simone G, Uzzo RG, Lau C, et al. Robotic versus laparoscopic radical nephrectomy: a large multi-institutional analysis (ROSULA Collaborative Group). World J Urol. 2019;37(11):2439–50.

    PubMed  Google Scholar 

  4. Ashrafi AN, Gill IS. Minimally invasive radical nephrectomy: a contemporary review. Transl Androl Urol. 2020;9(6):3112–22.

    PubMed  PubMed Central  Google Scholar 

  5. Li J, Peng L, Cao D, Cheng B, Gou H, Li Y, et al. Comparison of perioperative outcomes of robot-assisted vs. laparoscopic radical nephrectomy: a systematic review and meta-analysis. Front Oncol. 2020;10:551052.

    PubMed  PubMed Central  Google Scholar 

  6. Ljungberg B, Albiges L, Abu-Ghanem Y, Bensalah K, Dabestani S, Fernández-Pello S, et al. European association of urology guidelines on renal cell carcinoma: the 2019 update. Eur Urol. 2019;75(5):799–810.

    PubMed  Google Scholar 

  7. Mir MC, Derweesh I, Porpiglia F, Zargar H, Mottrie A, Autorino R. Partial nephrectomy versus radical nephrectomy for clinical T1b and T2 renal tumors: a systematic review and meta-analysis of comparative studies. Eur Urol. 2017;71(4):606–17.

    PubMed  Google Scholar 

  8. Lenis AT, Salmasi AH, Donin NM, Faiena I, Johnson DC, Drakaki A, et al. Trends in usage of cytoreductive partial nephrectomy and effect on overall survival in patients with metastatic renal cell carcinoma. Urol Oncol. 2018;36(2):78.e21–8.

    PubMed  Google Scholar 

  9. Shen D, Du S, Huang Q, Gao Y, Fan Y, Gu L, et al. A modified sequential vascular control strategy in robot-assisted level III–IV inferior vena cava thrombectomy: initial series mimicking the open ‘milking’ technique principle. BJU Int. 2020;126(4):447–56.

    PubMed  Google Scholar 

  10. Motzer RJ, Jonasch E, Michaelson MD, Nandagopal L, Gore JL, George S, et al. NCCN Guidelines Insights: Kidney Cancer, Version 2.2020. J Natl Compr Canc Netw. 2019;17(11):1278–85.

    CAS  PubMed  Google Scholar 

  11. Heng DY, Wells JC, Rini BI, Beuselinck B, Lee JL, Knox JJ, et al. Cytoreductive nephrectomy in patients with synchronous metastases from renal cell carcinoma: results from the International Metastatic Renal Cell Carcinoma Database Consortium. Eur Urol. 2014;66(4):704–10.

    PubMed  Google Scholar 

  12. Blute ML, Leibovich BC, Cheville JC, Lohse CM, Zincke H. A protocol for performing extended lymph node dissection using primary tumor pathological features for patients treated with radical nephrectomy for clear cell renal cell carcinoma. J Urol. 2004;172(2):465–9.

    PubMed  Google Scholar 

  13. Crispen PL, Breau RH, Allmer C, Lohse CM, Cheville JC, Leibovich BC, et al. Lymph node dissection at the time of radical nephrectomy for high-risk clear cell renal cell carcinoma: indications and recommendations for surgical templates. Eur Urol. 2011;59(1):18–23.

    PubMed  Google Scholar 

  14. Abaza R, Lowe G. Feasibility and adequacy of robot-assisted lymphadenectomy for renal-cell carcinoma. J Endourol. 2011;25(7):1155–9.

    PubMed  Google Scholar 

  15. Bekema HJ, MacLennan S, Imamura M, Lam TB, Stewart F, Scott N, et al. Systematic review of adrenalectomy and lymph node dissection in locally advanced renal cell carcinoma. Eur Urol. 2013;64(5):799–810.

    PubMed  Google Scholar 

  16. Porpiglia F, Amparore D, Checcucci E, Manfredi M, Stura I, Migliaretti G, et al. Three-dimensional virtual imaging of renal tumours: a new tool to improve the accuracy of nephrometry scores. BJU Int. 2019;124(6):945–54.

    PubMed  Google Scholar 

  17. Shirk JD, Thiel DD, Wallen EM, Linehan JM, White WM, Badani KK, et al. Effect of 3-dimensional virtual reality models for surgical planning of robotic-assisted partial nephrectomy on surgical outcomes: a randomized clinical trial. JAMA Netw Open. 2019;2(9):e1911598.

    PubMed  PubMed Central  Google Scholar 

  18. Zhang K, Zhu G, Li HB, Martinez Portillo FJ, et al. Application of 3D image reconstruction in robotic urological surgery. Chin J Urol. 2018;39(9):690–3.

    Google Scholar 

  19. Zhu G, Xing JC, Weng GB, et al. Application of holographic image navigation in urological laparoscopic and robotic surgery. Chin J Urol. 2020;41(2):117–23.

    Google Scholar 

  20. Ha US, Hwang TK, Kim YJ, Oh TH, Jeon YS, Lee W, et al. Comparison of oncological outcomes of transperitoneal and retroperitoneal laparoscopic radical nephrectomy for the management of clear-cell renal cell carcinoma: a multi-institutional study. BJU Int. 2011;107(9):1467–72.

    PubMed  Google Scholar 

  21. Fan X, Xu K, Lin T, Liu H, Yin Z, Dong W, et al. Comparison of transperitoneal and retroperitoneal laparoscopic nephrectomy for renal cell carcinoma: a systematic review and meta-analysis. BJU Int. 2013;111(4):611–21.

    PubMed  Google Scholar 

  22. Yin L, Zhang D, Teng J, Xu D. Retroperitoneal laparoscopic radical nephrectomy for renal cell carcinoma during pregnancy. Urol Int. 2013;90(4):487–9.

    PubMed  Google Scholar 

  23. Berglund RK, Gill IS, Babineau D, Desai M, Kaouk JH. A prospective comparison of transperitoneal and retroperitoneal laparoscopic nephrectomy in the extremely obese patient. BJU Int. 2007;99(4):871–4.

    PubMed  Google Scholar 

  24. Jing TLXD, Wang P, et al. Utility of the third arm in robotic-assisted laparoscopic partial nephrectomy for complex renal tumor. Chin J Urol. 2017;38(7):507–10.

    Google Scholar 

  25. Caputo PA, Ko O, Patel R, Stein R. Robotic-assisted laparoscopic nephrectomy. J Surg Oncol. 2015;112(7):723–7.

    PubMed  Google Scholar 

  26. Patel M, Porter J. Robotic retroperitoneal surgery: a contemporary review. Curr Opin Urol. 2013;23(1):51–6.

    PubMed  Google Scholar 

  27. Daneshmand S, Ahmadi H, Schuckman AK, Mitra AP, Cai J, Miranda G, et al. Enhanced recovery protocol after radical cystectomy for bladder cancer. J Urol. 2014;192(1):50–5.

    PubMed  Google Scholar 

  28. Crocerossa F, Carbonara U, Cantiello F, Marchioni M, Ditonno P, Mir MC, et al. Robot-assisted radical nephrectomy: a systematic review and meta-analysis of comparative studies. Eur Urol. 2020.

    Google Scholar 

  29. Gershman B, Bukavina L, Chen Z, Konety B, Schumache F, Li L, et al. The association of robot-assisted versus pure laparoscopic radical nephrectomy with perioperative outcomes and hospital costs. Eur Urol Focus. 2020;6(2):305–12.

    PubMed  Google Scholar 

  30. Asimakopoulos AD, Miano R, Annino F, Micali S, Spera E, Iorio B, et al. Robotic radical nephrectomy for renal cell carcinoma: a systematic review. BMC Urol. 2014;14:75.

    PubMed  PubMed Central  Google Scholar 

  31. Nik-Ahd F, Souders CP, Houman J, Zhao H, Chughtai B, Anger JT. Robotic urologic surgery: trends in food and drug administration-reported adverse events over the last decade. J Endourol. 2019;33(8):649–54.

    PubMed  Google Scholar 

  32. Marshall FF, Dietrick DD, Baumgartner WA, Reitz BA. Surgical management of renal cell carcinoma with intracaval neoplastic extension above the hepatic veins. J Urol. 1988;139(6):1166–72.

    CAS  PubMed  Google Scholar 

  33. Skinner DG, Pfister RF, Colvin R. Extension of renal cell carcinoma into the vena cava: the rationale for aggressive surgical management. J Urol. 1972;107(5):711–6.

    CAS  PubMed  Google Scholar 

  34. Skinner DG, Vermillion CD, Colvin RB. The surgical management of renal cell carcinoma. J Urol. 1972;107(5):705–10.

    CAS  PubMed  Google Scholar 

  35. Blute ML, Leibovich BC, Lohse CM, Cheville JC, Zincke H. The Mayo Clinic experience with surgical management, complications and outcome for patients with renal cell carcinoma and venous tumour thrombus. BJU Int. 2004;94(1):33–41.

    PubMed  Google Scholar 

  36. Ciancio G, Manoharan M, Katkoori D, De Los SR, Soloway MS. Long-term survival in patients undergoing radical nephrectomy and inferior vena cava thrombectomy: single-center experience. Eur Urol. 2010;57(4):667–72.

    PubMed  Google Scholar 

  37. Wagner B, Patard JJ, Méjean A, Bensalah K, Verhoest G, Zigeuner R, et al. Prognostic value of renal vein and inferior vena cava involvement in renal cell carcinoma. Eur Urol. 2009;55(2):452–9.

    PubMed  Google Scholar 

  38. Martínez-Salamanca JI, Huang WC, Millán I, Bertini R, Bianco FJ, Carballido JA, et al. Prognostic impact of the 2009 UICC/AJCC TNM staging system for renal cell carcinoma with venous extension. Eur Urol. 2011;59(1):120–7.

    PubMed  Google Scholar 

  39. Lee JY, Mucksavage P. Robotic radical nephrectomy with vena caval tumor thrombectomy: experience of novice robotic surgeons. Korean J Urol. 2012;53(12):879–82.

    PubMed  PubMed Central  Google Scholar 

  40. Abaza R. Initial series of robotic radical nephrectomy with vena caval tumor thrombectomy. Eur Urol. 2011;59(4):652–6.

    PubMed  Google Scholar 

  41. Gu L, Ma X, Gao Y, Li H, Li X, Chen L, et al. Robotic versus open level I–II inferior vena cava thrombectomy: a matched group comparative analysis. J Urol. 2017;198(6):1241–6.

    PubMed  Google Scholar 

  42. Chopra S, Simone G, Metcalfe C, de Castro Abreu AL, Nabhani J, Ferriero M, et al. Robot-assisted level II–III inferior vena cava tumor thrombectomy: step-by-step technique and 1-year outcomes. Eur Urol. 2017;72(2):267–74.

    PubMed  Google Scholar 

  43. Gill IS, Metcalfe C, Abreu A, Duddalwar V, Chopra S, Cunningham M, et al. Robotic level III inferior vena cava tumor thrombectomy: initial series. J Urol. 2015;194(4):929–38.

    PubMed  PubMed Central  Google Scholar 

  44. Nelson RJ, Maurice MJ, Kaouk JH. Robotic radical left nephrectomy with inferior vena cava level III thrombectomy. Urology. 2017;107:269.

    PubMed  Google Scholar 

  45. Ramirez D, Maurice MJ, Cohen B, Krishnamurthi V, Haber GP. Robotic level III IVC tumor thrombectomy: duplicating the open approach. Urology. 2016;90:204–7.

    PubMed  Google Scholar 

  46. Bratslavsky G, Cheng JS. Robotic-assisted radical nephrectomy with retrohepatic vena caval tumor thrombectomy (level III) combined with extended retroperitoneal lymph node dissection. Urology. 2015;86(6):1235–40.

    PubMed  Google Scholar 

  47. Sood A, Jeong W, Barod R, Bahnson E, Kirura P, Abdollah F, et al. Robot-assisted hepatic mobilization and control of suprahepatic infradiaphragmatic inferior vena cava for level 3 vena caval thrombectomy: an IDEAL stage 0 study. J Surg Oncol. 2015;112(7):741–5.

    PubMed  Google Scholar 

  48. Abaza R, Eun DD, Gallucci M, Gill IS, Menon M, Mottrie A, et al. Robotic surgery for renal cell carcinoma with vena caval tumor thrombus. Eur Urol Focus. 2016;2(6):601–7.

    PubMed  Google Scholar 

  49. Murphy C, Abaza R. Complex robotic nephrectomy and inferior vena cava tumor thrombectomy: an evolving landscape. Curr Opin Urol. 2020;30(1):83–9.

    PubMed  Google Scholar 

  50. Wang B, Li H, Ma X, Zhang X, Gu L, Li X, et al. Robot-assisted laparoscopic inferior vena cava thrombectomy: different sides require different techniques. Eur Urol. 2016;69(6):1112–9.

    PubMed  Google Scholar 

  51. Wang B, Li H, Huang Q, Liu K, Fan Y, Peng C, et al. Robot-assisted retrohepatic inferior vena cava thrombectomy: first or second porta hepatis as an important boundary landmark. Eur Urol. 2018;74(4):512–20.

    PubMed  Google Scholar 

  52. Wang B, Huang Q, Liu K, Fan Y, Peng C, Gu L, et al. Robot-assisted level III–IV inferior vena cava thrombectomy: initial series with step-by-step procedures and 1-yr outcomes. Eur Urol. 2020;78(1):77–86.

    CAS  PubMed  Google Scholar 

  53. Shi T, Huang Q, Liu K, Du S, Fan Y, Yang L, et al. Robot-assisted cavectomy versus thrombectomy for level II inferior vena cava thrombus: decision-making scheme and multi-institutional analysis. Eur Urol. 2020;78(4):592–602.

    PubMed  Google Scholar 

  54. Rodriguez Faba O, Linares E, Tilki D, Capitanio U, Evans CP, Montorsi F, et al. Impact of microscopic wall invasion of the renal vein or inferior vena cava on cancer-specific survival in patients with renal cell carcinoma and tumor thrombus: a multi-institutional analysis from the international renal cell carcinoma-venous thrombus consortium. Eur Urol Focus. 2018;4(3):435–41.

    PubMed  Google Scholar 

  55. Fan S, Dai X, Yang K, Xiong S, Xiong G, Li Z, et al. Robot-assisted pyeloplasty using a new robotic system, the KangDuo-Surgical Robot-01: a prospective, single-centre, single-arm clinical study. BJU Int. 2021.

    Google Scholar 

  56. Mikhail D, Sarcona J, Mekhail M, Richstone L. Urologic robotic surgery. Surg Clin North Am. 2020;100(2):361–78.

    PubMed  Google Scholar 

  57. Fang AM, Saidian A, Magi-Galluzzi C, Nix JW, Rais-Bahrami S. Single-port robotic partial and radical nephrectomies for renal cortical tumors: initial clinical experience. J Robot Surg. 2020;14(5):773–80.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, G., Abaza, R., Zhang, X., Huang, Q. (2022). Robot-Assisted Radical Nephrectomy and Vena Cava Thrombus Management. In: Wiklund, P., Mottrie, A., Gundeti, M.S., Patel, V. (eds) Robotic Urologic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-00363-9_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-00363-9_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-00362-2

  • Online ISBN: 978-3-031-00363-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics