Skip to main content

Outcomes of RALP: An Evidence-Based Approach

  • Chapter
  • First Online:
Robotic Urologic Surgery

Abstract

Prostate cancer (PCa) is the third most common malignancy (7.3%) following breast (11.7%) and lung cancers (11.4%), and the eighth most common cause of cancer mortality (3.8%) in 2020. Furthermore, it is the most frequently diagnosed male cancer in 112 countries around the globe [1]. PCa represents a major health burden as it was responsible for 7.1 million disability-adjusted life-years (of which, 88% are years of life lost and 12% are years of life with disability) around the world in 2017 [2]. Radical prostatectomy (RP) is considered the mainstay of surgical treatment for men with localized PCa and life expectancy >10 years [3]. The first description of RP for treatment of PCa dates back to the early 1900s, when Young H [4], reported his experience with open perineal prostatectomy in 75 patients; however, this approach was associated with high morbidity and mortality as it was used in the era before the introduction of antibiotics, balloon catheters and blood transfusion in the medical practice. After approximately 40 years, Millin [5] modified the RP approach to be performed through an abdominal incision, yet it was still associated with severe blood loss from the dorsal venous complex (DVC) as it was not tied [6]. Later on, Walsh introduced several modifications to the retropubic RP technique including the ligation of the DVC and the nerve-sparing RP, which reduced the perioperative complications of this surgery and improved its outcomes [6]. As laparoscopic approaches became popular among surgeons, Raboy et al. [7], reported the first case of laparoscopic radical prostatectomy (LRP), which seemed to be associated with several advantages over the ORP, including less intraoperative blood loss and postoperative pain, and shorter hospitalization [8]; however, the laparoscopic approach was not devoid of drawbacks such as the longer operative time and learning curve, and the two-dimensional vision compared to the open approach [6]. In the early 2000s, robotic surgery was introduced and popularized because of its important advantages including three-dimensional (3D) vision, articulated instruments with seven degrees of freedom, magnified vision, tremors filtration, and shorter learning curve [8]. In this setting, the robotic approach to RP was first introduced in 2001 [9], and since then it gained great acceptance among surgeons and patients; as a consequence, to date, approximately 85% of RPs are performed through robotic-assisted laparoscopic approach in the USA [10, 11].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  2. Fitzmaurice C, Abate D, Abbasi N, Abbastabar H, Abd-Allah F, Abdel-Rahman O, et al. Global, regional, and National Cancer Incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017. JAMA Oncol. 2019;5:1749. https://doi.org/10.1001/jamaoncol.2019.2996.

    Article  PubMed  Google Scholar 

  3. Mottet N, van den Bergh RCN, Briers E, Van den Broeck T, Cumberbatch MG, De Santis M, et al. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate Cancer-2020 update. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol. 2021;79:243–62. https://doi.org/10.1016/j.eururo.2020.09.042.

    Article  CAS  PubMed  Google Scholar 

  4. Young HH. VIII. Conservative perineal prostatectomy: the results of two years’ experience and report of seventy-five cases. Ann Surg. 1905;41:549–57.

    CAS  PubMed  Google Scholar 

  5. Millin T. Retropubic Prostatectomy. J Urol. 1948;59:267–74. https://doi.org/10.1016/S0022-5347(17)69374-1.

    Article  CAS  PubMed  Google Scholar 

  6. Costello AJ. Considering the role of radical prostatectomy in 21st century prostate cancer care. Nat Rev Urol. 2020;17:177–88. https://doi.org/10.1038/s41585-020-0287-y.

    Article  PubMed  Google Scholar 

  7. Raboy A, Ferzli G, Albert P. Initial experience with extraperitoneal endoscopic radical retropubic prostatectomy. Urology. 1997;50:849–53. https://doi.org/10.1016/S0090-4295(97)00485-8.

    Article  CAS  PubMed  Google Scholar 

  8. Du Y, Long Q, Guan B, Mu L, Tian J, Jiang Y, et al. Robot-assisted radical prostatectomy is more beneficial for prostate cancer patients: a system review and meta-analysis. Med Sci Monit. 2018;24:272–87. https://doi.org/10.12659/MSM.907092.

    Article  PubMed  Google Scholar 

  9. Binder J, Kramer W. Robotically-assisted laparoscopic radical prostatectomy. BJU Int. 2001;87:408–10. https://doi.org/10.1046/j.1464-410X.2001.00115.x.

    Article  CAS  PubMed  Google Scholar 

  10. Carbonara U, Srinath M, Crocerossa F, Ferro M, Cantiello F, Lucarelli G, et al. Robot-assisted radical prostatectomy versus standard laparoscopic radical prostatectomy: an evidence-based analysis of comparative outcomes. World J Urol. 2021; https://doi.org/10.1007/s00345-021-03687-5.

  11. Porpiglia F, Fiori C, Bertolo R, Manfredi M, Mele F, Checcucci E, et al. Five-year outcomes for a prospective randomised controlled trial comparing laparoscopic and robot-assisted radical prostatectomy. Eur Urol Focus. 2018;4:80–6. https://doi.org/10.1016/j.euf.2016.11.007.

    Article  PubMed  Google Scholar 

  12. Allan C, Ilic D. Laparoscopic versus robotic-assisted radical prostatectomy for the treatment of localised prostate cancer: a systematic review. Urol Int. 2016;96:373–8. https://doi.org/10.1159/000435861.

    Article  PubMed  Google Scholar 

  13. Huang X, Wang L, Zheng X, Wang X. Comparison of perioperative, functional, and oncologic outcomes between standard laparoscopic and robotic-assisted radical prostatectomy: a systemic review and meta-analysis. Surg Endosc. 2017;31:1045–60. https://doi.org/10.1007/s00464-016-5125-1.

    Article  PubMed  Google Scholar 

  14. Liao H, Duan X, Du Y, Mou X, Hu T, Cai T, et al. Radical prostatectomy after previous transurethral resection of the prostate: oncological, surgical and functional outcomes—a meta-analysis. World J Urol. 2020;38:1919–32. https://doi.org/10.1007/s00345-019-02986-2.

    Article  PubMed  Google Scholar 

  15. Mazzone E, Dell’Oglio P, Rosiello G, Puliatti S, Brook N, Turri F, et al. Technical refinements in Superextended robot-assisted radical prostatectomy for locally advanced prostate cancer patients at multiparametric magnetic resonance imaging. Eur Urol. 2021;80(1):104–12. https://doi.org/10.1016/j.eururo.2020.09.009.

    Article  PubMed  Google Scholar 

  16. Gandaglia G, De Lorenzis E, Novara G, Fossati N, De Groote R, Dovey Z, et al. Robot-assisted radical prostatectomy and extended pelvic lymph node dissection in patients with locally-advanced prostate cancer. Eur Urol. 2017;71:249–56. https://doi.org/10.1016/j.eururo.2016.05.008.

    Article  PubMed  Google Scholar 

  17. Wang L, Wang B, Ai Q, Zhang Y, Lv X, Li H, et al. Long-term cancer control outcomes of robot-assisted radical prostatectomy for prostate cancer treatment: a meta-analysis. Int Urol Nephrol. 2017;49:995–1005. https://doi.org/10.1007/s11255-017-1552-8.

    Article  PubMed  Google Scholar 

  18. Veccia A, Antonelli A, Francavilla S, Porpiglia F, Simeone C, Lima E, et al. Minimally invasive radical prostatectomy after previous bladder outlet surgery: a systematic review and pooled analysis of comparative studies. J Urol. 2019;202:511–7. https://doi.org/10.1097/JU.0000000000000312.

    Article  PubMed  Google Scholar 

  19. Asimakopoulos AD, Pereira Fraga CT, Annino F, Pasqualetti P, Calado AA, Mugnier C. Randomized comparison between laparoscopic and robot-assisted nerve-sparing radical prostatectomy. J Sex Med. 2011;8:1503–12. https://doi.org/10.1111/j.1743-6109.2011.02215.x.

    Article  PubMed  Google Scholar 

  20. Porpiglia F, Morra I, Lucci Chiarissi M, Manfredi M, Mele F, Grande S, et al. Randomised controlled trial comparing laparoscopic and robot-assisted radical prostatectomy. Eur Urol. 2013;63:606–14. https://doi.org/10.1016/j.eururo.2012.07.007.

    Article  PubMed  Google Scholar 

  21. Yaxley JW, Coughlin GD, Chambers SK, Occhipinti S, Samaratunga H, Zajdlewicz L, et al. Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: early outcomes from a randomised controlled phase 3 study. Lancet. 2016;388:1057–66. https://doi.org/10.1016/S0140-6736(16)30592-X.

    Article  PubMed  Google Scholar 

  22. Coughlin GD, Yaxley JW, Chambers SK, Occhipinti S, Samaratunga H, Zajdlewicz L, et al. Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: 24-month outcomes from a randomised controlled study. Lancet Oncol. 2018;19:1051–60. https://doi.org/10.1016/S1470-2045(18)30357-7.

    Article  PubMed  Google Scholar 

  23. Stolzenburg J-U, Holze S, Neuhaus P, Kyriazis I, Do HM, Dietel A, et al. Robotic-assisted versus laparoscopic surgery: outcomes from the first multicentre, randomised, patient-blinded controlled trial in radical prostatectomy (LAP-01). Eur Urol. 2021;79:750–9. https://doi.org/10.1016/j.eururo.2021.01.030.

    Article  PubMed  Google Scholar 

  24. Cao L, Yang Z, Qi L, Chen M. Robot-assisted and laparoscopic vs open radical prostatectomy in clinically localized prostate cancer: perioperative, functional, and oncological outcomes. Medicine (Baltimore). 2019;98:e15770. https://doi.org/10.1097/MD.0000000000015770.

    Article  PubMed  Google Scholar 

  25. Ilic D, Evans SM, Allan CA, Jung JH, Murphy D, Frydenberg M. Laparoscopic and robot-assisted vs open radical prostatectomy for the treatment of localized prostate cancer : a Cochrane systematic review. BJU Int. 2018;121(6):845–53. https://doi.org/10.1111/bju.14062.

    Article  PubMed  Google Scholar 

  26. Lee SH, Seo HJ, Lee NR, Son SK, Kim DK, Rha KH. Robot-assisted radical prostatectomy has lower biochemical recurrence than laparoscopic radical prostatectomy: systematic review and meta-analysis. Investig Clin Urol. 2017;58:152. https://doi.org/10.4111/icu.2017.58.3.152.

    Article  PubMed  Google Scholar 

  27. Tang K, Jiang K, Chen H, Chen Z, Xu H, Ye Z. Robotic vs . Retropubic radical prostatectomy in prostate cancer: a systematic review and a meta-analysis update. Oncotarget. 2017;8:32237–57. https://doi.org/10.18632/oncotarget.13332.

    Article  PubMed  Google Scholar 

  28. Seo H-J, Lee NR, Son SK, Kim DK, Rha KH, Lee SH. Comparison of robot-assisted radical prostatectomy and open radical prostatectomy outcomes: a systematic review and meta-analysis. Yonsei Med J. 2016;57:1165. https://doi.org/10.3349/ymj.2016.57.5.1165.

    Article  PubMed  Google Scholar 

  29. Pan X, Cui X, Teng J, Zhang D, Wang Z, Qu F, et al. Robot-assisted radical prostatectomy vs. open Retropubic radical prostatectomy for prostate cancer: a systematic review and meta-analysis. Indian J Surg. 2015;77:1326–33. https://doi.org/10.1007/s12262-014-1170-y.

    Article  PubMed  Google Scholar 

  30. Coelho RF, Rocco B, Patel MB, Orvieto MA, Chauhan S, Ficarra V, et al. Retropubic, laparoscopic, and robot-assisted radical prostatectomy: a critical review of outcomes reported by high-volume centers. J Endourol. 2010;24:2003–15. https://doi.org/10.1089/end.2010.0295.

    Article  PubMed  Google Scholar 

  31. Novara G, Ficarra V, Rosen RC, Artibani W, Costello A, Eastham JA, et al. Systematic review and meta-analysis of perioperative outcomes and complications after robot-assisted radical prostatectomy. Eur Urol. 2012;62:431–52. https://doi.org/10.1016/j.eururo.2012.05.044.

    Article  PubMed  Google Scholar 

  32. Ficarra V, Novara G, Rosen RC, Artibani W, Carroll PR, Costello A, et al. Systematic review and meta-analysis of studies reporting urinary continence recovery after robot-assisted radical prostatectomy. Eur Urol. 2012;62:405–17.

    Article  PubMed  Google Scholar 

  33. Wang T, Wang Q, Wang S. A meta-analysis of robot assisted laparoscopic radical prostatectomy versus laparoscopic radical prostatectomy. Open Med. 2019;14:485–90. https://doi.org/10.1515/med-2019-0052.

    Article  Google Scholar 

  34. Srougi V, Bessa J, Baghdadi M, Nunes-Silva I, da Costa JB, Garcia-Barreras S, et al. Surgical method influences specimen margins and biochemical recurrence during radical prostatectomy for high-risk prostate cancer: a systematic review and meta-analysis. World J Urol. 2017;35:1481–8. https://doi.org/10.1007/s00345-017-2021-9.

    Article  PubMed  Google Scholar 

  35. Novara G, Ficarra V, Mocellin S, Ahlering TE, Carroll PR, Graefen M, et al. Systematic review and meta-analysis of studies reporting oncologic outcome after robot-assisted radical prostatectomy. Eur Urol. 2012;62:382–404. https://doi.org/10.1016/j.eururo.2012.05.047.

    Article  PubMed  Google Scholar 

  36. Ficarra V, Novara G, Ahlering TE, Costello A, Eastham JA, Graefen M, et al. Systematic review and meta-analysis of studies reporting potency rates after robot-assisted radical prostatectomy. Eur Urol. 2012;62:418–30. https://doi.org/10.1016/j.eururo.2012.05.046.

    Article  PubMed  Google Scholar 

  37. Tewari A, Sooriakumaran P, Bloch DA, Seshadri-Kreaden U, Hebert AE, Wiklund P. Positive surgical margin and perioperative complication rates of primary surgical treatments for prostate cancer: a systematic review and meta-analysis comparing retropubic, laparoscopic, and robotic prostatectomy. Eur Urol. 2012;62:1–15. https://doi.org/10.1016/j.eururo.2012.02.029.

    Article  PubMed  Google Scholar 

  38. Asimakopoulos AD, Annino F, Mugnier C, Lopez L, Hoepffner JL, Gaston R, et al. Robotic radical prostatectomy: analysis of midterm pathologic and oncologic outcomes: a historical series from a high-volume center. Surg Endosc. 2020; https://doi.org/10.1007/s00464-020-08177-0.

  39. Roscigno M, La Croce G, Naspro R, Nicolai M, Manica M, Scarcello M, et al. Extended pelvic lymph node dissection during radical prostatectomy: comparison between initial robotic experience of a high volume open surgeon and his contemporary open series. Minerva Urol Nefrol. 2019; https://doi.org/10.23736/S0393-2249.19.03404-0.

  40. Xia L, Sperling CD, Taylor BL, Talwar R, Chelluri RR, Raman JD, et al. Associations between hospital volume and outcomes of robot-assisted radical prostatectomy. J Urol. 2020;203:926–32. https://doi.org/10.1097/JU.0000000000000698.

    Article  PubMed  Google Scholar 

  41. Sanda MG, Cadeddu JA, Kirkby E, Chen RC, Crispino T, Fontanarosa J, et al. Clinically localized prostate cancer: AUA/ASTRO/SUO guideline. Part II: recommended approaches and details of specific care options. J Urol. 2018;199:990–7. https://doi.org/10.1016/j.juro.2018.01.002.

    Article  PubMed  Google Scholar 

  42. Mitropoulos D, Artibani W, Graefen M, Remzi M, Rouprêt M, Truss M. Reporting and grading of complications after urologic surgical procedures: an ad hoc EAU guidelines panel assessment and recommendations. Eur Urol. 2012;61:341–9. https://doi.org/10.1016/j.eururo.2011.10.033.

    Article  PubMed  Google Scholar 

  43. Martinez PF, Romeo A, Tobia I, Isola M, Giudice CR, Villamil WA. Comparing open and robotic salvage radical prostatectomy after radiotherapy: predictors and outcomes. Prostate Int. 2021;9:42–7. https://doi.org/10.1016/j.prnil.2020.07.003.

    Article  PubMed  Google Scholar 

  44. Onol FF, Bhat S, Moschovas M, Rogers T, Ganapathi H, Roof S, et al. Comparison of outcomes of salvage robot-assisted laparoscopic prostatectomy for post-primary radiation vs focal therapy. BJU Int. 2020;125:103–11. https://doi.org/10.1111/bju.14900.

    Article  PubMed  Google Scholar 

  45. De Groote R, Nathan A, De Bleser E, Pavan N, Sridhar A, Kelly J, et al. Techniques and outcomes of salvage robot-assisted radical prostatectomy (sRARP). Eur Urol. 2020;78:885–92. https://doi.org/10.1016/j.eururo.2020.05.003.

    Article  CAS  PubMed  Google Scholar 

  46. Nathan A, Fricker M, De Groote R, Arora A, Phuah Y, Flora K, et al. Salvage versus primary robot-assisted radical prostatectomy: a propensity-matched comparative effectiveness study from a high-volume tertiary Centre. Eur Urol Open Sci. 2021;27:43–52. https://doi.org/10.1016/j.euros.2021.03.003.

    Article  PubMed  Google Scholar 

  47. Cathcart P, Ribeiro L, Moore C, Ahmed HU, Leslie T, Arya M, et al. Outcomes of the RAFT trial: robotic surgery after focal therapy. BJU Int. 2021;128(4):504–10. https://doi.org/10.1111/bju.15432.

    Article  PubMed  Google Scholar 

  48. Uy M, Cassim R, Kim J, Hoogenes J, Shayegan B, Matsumoto ED. Extraperitoneal versus transperitoneal approach for robot-assisted radical prostatectomy: a contemporary systematic review and meta-analysis. J Robot Surg. 2021; https://doi.org/10.1007/s11701-021-01245-0.

  49. Moschovas MC, Seetharam Bhat KR, Onol FF, Rogers T, Ogaya-Pinies G, Roof S, et al. Single-port technique evolution and current practice in urologic procedures. Asian J Urol. 2021;8:100–4. https://doi.org/10.1016/j.ajur.2020.05.003.

    Article  PubMed  Google Scholar 

  50. Kallidonis P, Rai BP, Qazi H, Ganzer R, Do M, Dietel A, et al. Critical appraisal of literature comparing minimally invasive extraperitoneal and transperitoneal radical prostatectomy: a systematic review and meta-analysis. Arab J Urol. 2017;15:267–79. https://doi.org/10.1016/j.aju.2017.07.003.

    Article  PubMed  Google Scholar 

  51. Lee W, Tang J, Li A, Zhu Y, Ling X, Cang J, et al. Transperitoneal versus extraperitoneal robot-assisted laparoscopic radical prostatectomy on postoperative hepatic and renal function. Gland Surg. 2020;9:759–66. https://doi.org/10.21037/gs-20-533.

    Article  PubMed  Google Scholar 

  52. Horovitz D, Feng C, Messing EM, Joseph JV. Extraperitoneal vs. transperitoneal robot-assisted radical prostatectomy in patients with a history of prior inguinal hernia repair with mesh. J Robot Surg. 2017;11:447–54. https://doi.org/10.1007/s11701-017-0678-0.

    Article  PubMed  Google Scholar 

  53. Horovitz D, Feng C, Messing EM, Joseph JV. Extraperitoneal vs Transperitoneal robot-assisted radical prostatectomy in the setting of prior abdominal or pelvic surgery. J Endourol. 2017;31:366–73. https://doi.org/10.1089/end.2016.0706.

    Article  PubMed  Google Scholar 

  54. Akand M, Erdogru T, Avci E, Ates M. Transperitoneal versus extraperitoneal robot-assisted laparoscopic radical prostatectomy: a prospective single surgeon randomized comparative study. Int J Urol. 2015;22:916–21. https://doi.org/10.1111/iju.12854.

    Article  CAS  PubMed  Google Scholar 

  55. Capello SA, Boczko J, Patel HRH, Joseph JV. Randomized comparison of Extraperitoneal and Transperitoneal access for robot-assisted radical prostatectomy. J Endourol. 2007;21:1199–202. https://doi.org/10.1089/end.2007.9906.

    Article  PubMed  Google Scholar 

  56. Galfano A, Ascione A, Grimaldi S, Petralia G, Strada E, Bocciardi AM. A new anatomic approach for robot-assisted laparoscopic prostatectomy: a feasibility study for completely Intrafascial surgery. Eur Urol. 2010;58:457–61. https://doi.org/10.1016/j.eururo.2010.06.008.

    Article  PubMed  Google Scholar 

  57. Galfano A, Di Trapani D, Sozzi F, Strada E, Petralia G, Bramerio M, et al. Beyond the learning curve of the Retzius-sparing approach for robot-assisted laparoscopic radical prostatectomy: oncologic and functional results of the first 200 patients with ≥1 year of follow-up. Eur Urol. 2013;64:974–80. https://doi.org/10.1016/j.eururo.2013.06.046.

    Article  PubMed  Google Scholar 

  58. Kowalczyk KJ, Davis M, O’Neill J, Lee H, Orzel J, Rubin RS, et al. Impact of Retzius-sparing versus standard robotic-assisted radical prostatectomy on penile shortening, Peyronie’s disease, and inguinal hernia sequelae. Eur Urol Open Sci. 2020;22:17–22. https://doi.org/10.1016/j.euros.2020.09.004.

    Article  PubMed  Google Scholar 

  59. Chang KD, Abdel Raheem A, Santok GDR, Kim LHC, Lum TGH, Lee SH, et al. Anatomical Retzius-space preservation is associated with lower incidence of postoperative inguinal hernia development after robot-assisted radical prostatectomy. Hernia. 2017;21:555–61. https://doi.org/10.1007/s10029-017-1588-9.

    Article  CAS  PubMed  Google Scholar 

  60. Tai T-E, Wu C-C, Kang Y-N, Wu J-C. Effects of Retzius sparing on robot-assisted laparoscopic prostatectomy: a systematic review with meta-analysis. Surg Endosc. 2020;34:4020–9. https://doi.org/10.1007/s00464-019-07190-2.

    Article  PubMed  Google Scholar 

  61. Rosenberg JE, Jung JH, Edgerton Z, Lee H, Lee S, Bakker CJ, et al. Retzius-sparing versus standard robot-assisted laparoscopic prostatectomy for the treatment of clinically localized prostate cancer. BJU Int. 2021;128:12–20. https://doi.org/10.1111/bju.15385.

    Article  CAS  PubMed  Google Scholar 

  62. Phukan C, Mclean A, Nambiar A, Mukherjee A, Somani B, Krishnamoorthy R, et al. Retzius sparing robotic assisted radical prostatectomy vs. conventional robotic assisted radical prostatectomy: a systematic review and meta-analysis. World J Urol. 2020;38:1123–34. https://doi.org/10.1007/s00345-019-02798-4.

    Article  PubMed  Google Scholar 

  63. Jiang Y-L, Zheng G-F, Jiang Z-P, Zhen-Li, Zhou X-L, Zhou J, et al. Comparison of Retzius-sparing robot-assisted laparoscopic radical prostatectomy vs standard robot-assisted radical prostatectomy: a meta-analysis. BMC Urol. 2020;20:114. https://doi.org/10.1186/s12894-020-00685-4.

    Article  PubMed  Google Scholar 

  64. Dirie NI, Pokhrel G, Guan W, Mumin MA, Yang J, Masau JF, et al. Is Retzius-sparing robot-assisted radical prostatectomy associated with better functional and oncological outcomes? Literature review and meta-analysis. Asian J Urol. 2019;6:174–82. https://doi.org/10.1016/j.ajur.2018.02.001.

    Article  PubMed  Google Scholar 

  65. Checcucci E, Veccia A, Fiori C, Amparore D, Manfredi M, Di Dio M, et al. Retzius-sparing robot-assisted radical prostatectomy vs the standard approach: a systematic review and analysis of comparative outcomes. BJU Int. 2020;125:8–16. https://doi.org/10.1111/bju.14887.

    Article  PubMed  Google Scholar 

  66. Ko YH, Coelho RF, Sivaraman A, Schatloff O, Chauhan S, Abdul-Muhsin HM, et al. Retrograde versus Antegrade nerve sparing during robot-assisted radical prostatectomy: which is better for achieving early functional recovery? Eur Urol. 2013;63:169–77. https://doi.org/10.1016/j.eururo.2012.09.051.

    Article  PubMed  Google Scholar 

  67. Walsh PC. Anatomic radical prostatectomy: evolution of the surgical technique. J Urol. 1998;160(6 Pt 2):2418–24. https://doi.org/10.1097/00005392-199812020-00010.

    Article  CAS  PubMed  Google Scholar 

  68. Walz J, Burnett AL, Costello AJ, Eastham JA, Graefen M, Guillonneau B, et al. A critical analysis of the current knowledge of surgical anatomy related to optimization of cancer control and preservation of continence and erection in candidates for radical prostatectomy. Eur Urol. 2010;57:179–92. https://doi.org/10.1016/j.eururo.2009.11.009.

    Article  PubMed  Google Scholar 

  69. Eichelberg C, Erbersdobler A, Michl U, Schlomm T, Salomon G, Graefen M, et al. Nerve distribution along the prostatic capsule. Eur Urol. 2007;51:105–11. https://doi.org/10.1016/j.eururo.2006.05.038.

    Article  PubMed  Google Scholar 

  70. de Carvalho PA, Barbosa JABA, Guglielmetti GB, Cordeiro MD, Rocco B, Nahas WC, et al. Retrograde release of the neurovascular bundle with preservation of dorsal venous complex during robot-assisted radical prostatectomy: optimizing functional outcomes. Eur Urol. 2020;77:628–35. https://doi.org/10.1016/j.eururo.2018.07.003.

    Article  PubMed  Google Scholar 

  71. Puliatti S, Elsherbiny A, Eissa A, Pirola G, Morini E, Squecco D, et al. Effect of puboprostatic ligament reconstruction on continence recovery after robot-assisted laparoscopic prostatectomy: our initial experience. Minerva Urol Nefrol. 2019; https://doi.org/10.23736/S0393-2249.18.03260-5.

  72. Vis AN, van der Poel HG, Ruiter AEC, Hu JC, Tewari AK, Rocco B, et al. Posterior, anterior, and Periurethral surgical reconstruction of urinary continence mechanisms in robot-assisted radical prostatectomy: a description and video compilation of commonly performed surgical techniques. Eur Urol. 2019;76:814–22. https://doi.org/10.1016/j.eururo.2018.11.035.

    Article  PubMed  Google Scholar 

  73. Heo JE, Lee JS, Goh HJ, Jang WS, Choi YD. Urethral realignment with maximal urethral length and bladder neck preservation in robot-assisted radical prostatectomy: urinary continence recovery. PLoS One. 2020;15:e0227744. https://doi.org/10.1371/journal.pone.0227744.

    Article  CAS  PubMed  Google Scholar 

  74. Kim JW, Kim DK, Ahn HK, Do JH, Lee JY, Cho KS. Effect of bladder neck preservation on Long-term urinary continence after robot-assisted laparoscopic prostatectomy: a systematic review and meta-analysis. J Clin Med. 2019;8:2068. https://doi.org/10.3390/jcm8122068.

    Article  PubMed  Google Scholar 

  75. Mungovan SF, Sandhu JS, Akin O, Smart NA, Graham PL, Patel MI. Preoperative membranous urethral length measurement and continence recovery following radical prostatectomy: a systematic review and meta-analysis. Eur Urol. 2017;71:368–78. https://doi.org/10.1016/j.eururo.2016.06.023.

    Article  PubMed  Google Scholar 

  76. Nyarangi-Dix JN, Radtke JP, Hadaschik B, Pahernik S, Hohenfellner M. Impact of complete bladder neck preservation on urinary continence, quality of life and surgical margins after radical prostatectomy: a randomized, controlled, single blind trial. J Urol. 2013;189:891–8. https://doi.org/10.1016/j.juro.2012.09.082.

    Article  PubMed  Google Scholar 

  77. Nyarangi-Dix JN, Tichy D, Hatiboglu G, Pahernik S, Tosev G, Hohenfellner M. Complete bladder neck preservation promotes long-term post-prostatectomy continence without compromising midterm oncological outcome: analysis of a randomised controlled cohort. World J Urol. 2018;36:349–55. https://doi.org/10.1007/s00345-017-2134-1.

    Article  PubMed  Google Scholar 

  78. Sfoungaristos S, Kontogiannis S, Perimenis P. Early continence recovery after preservation of maximal urethral length until the level of Verumontanum during radical prostatectomy: primary oncological and functional outcomes after 1 year of follow-up. Biomed Res Int. 2013;2013:1–7. https://doi.org/10.1155/2013/426208.

    Article  Google Scholar 

  79. Salazar A, Regis L, Planas J, Celma A, Santamaria A, Trilla E, et al. A randomised controlled trial to assess the benefit of posterior Rhabdosphincter reconstruction in early urinary continence recovery after robot-assisted radical prostatectomy. Eur Urol Oncol. 2021; https://doi.org/10.1016/j.euo.2021.02.005.

  80. Ogawa S, Hoshi S, Koguchi T, Hata J, Sato Y, Akaihata H, et al. Three-layer two-step posterior reconstruction using peritoneum during robot-assisted radical prostatectomy to improve recovery of urinary continence: a prospective comparative study. J Endourol. 2017;31:1251–7. https://doi.org/10.1089/end.2017.0410.

    Article  PubMed  Google Scholar 

  81. Sutherland DE, Linder B, Guzman AM, Hong M, Frazier HA, Engel JD, et al. Posterior Rhabdosphincter reconstruction during robotic assisted radical prostatectomy: results from a phase II randomized clinical trial. J Urol. 2011;185:1262–7. https://doi.org/10.1016/j.juro.2010.11.085.

    Article  PubMed  Google Scholar 

  82. Jeong CW, Lee JK, Oh JJ, Lee S, Jeong SJ, Hong SK, et al. Effects of new 1-step posterior reconstruction method on recovery of continence after robot-assisted laparoscopic prostatectomy: results of a prospective, single-blind, parallel group, randomized, controlled trial. J Urol. 2015;193:935–42. https://doi.org/10.1016/j.juro.2014.10.023.

    Article  PubMed  Google Scholar 

  83. Hurtes X, Rouprêt M, Vaessen C, Pereira H, Faivre D’Arcier B, Cormier L, et al. Anterior suspension combined with posterior reconstruction during robot-assisted laparoscopic prostatectomy improves early return of urinary continence: a prospective randomized multicentre trial. BJU Int. 2012;110:875–83. https://doi.org/10.1111/j.1464-410X.2011.10849.x.

    Article  PubMed  Google Scholar 

  84. Menon M, Muhletaler F, Campos M, Peabody JO. Assessment of early continence after reconstruction of the Periprostatic tissues in patients undergoing computer assisted (robotic) prostatectomy: results of a 2 group parallel randomized controlled trial. J Urol. 2008;180:1018–23. https://doi.org/10.1016/j.juro.2008.05.046.

    Article  PubMed  Google Scholar 

  85. Koliakos N, Mottrie A, Buffi N, De Naeyer G, Willemsen P, Fonteyne E. Posterior and anterior fixation of the urethra during robotic prostatectomy improves early continence rates. Scand J Urol Nephrol. 2010;44:5–10. https://doi.org/10.3109/00365590903413627.

    Article  PubMed  Google Scholar 

  86. Sammon JD, Muhletaler F, Peabody JO, Diaz-Insua M, Satyanaryana R, Menon M. Long-term functional urinary outcomes comparing single- vs double-layer Urethrovesical anastomosis: two-year follow-up of a two-group parallel randomized controlled trial. Urology. 2010;76:1102–7. https://doi.org/10.1016/j.urology.2010.05.052.

    Article  PubMed  Google Scholar 

  87. Student V, Vidlar A, Grepl M, Hartmann I, Buresova E, Student V. Advanced reconstruction of Vesicourethral support (ARVUS) during robot-assisted radical prostatectomy: one-year functional outcomes in a two-group randomised controlled trial. Eur Urol. 2017;71:822–30. https://doi.org/10.1016/j.eururo.2016.05.032.

    Article  PubMed  Google Scholar 

  88. Manfredi M, Checcucci E, Fiori C, Garrou D, Aimar R, Amparore D, et al. Total anatomical reconstruction during robot-assisted radical prostatectomy: focus on urinary continence recovery and related complications after 1000 procedures. BJU Int. 2019;124:477–86. https://doi.org/10.1111/bju.14716.

    Article  PubMed  Google Scholar 

  89. Checcucci E, Pecoraro A, de Cillis S, Manfredi M, Amparore D, Aimar R, et al. The importance of anatomical reconstruction for continence recovery after robot assisted radical prostatectomy: a systematic review and pooled analysis from referral centers. Minerva Urol Nephrol. 2021;73:165–77. https://doi.org/10.23736/S0393-2249.20.04146-6.

    Article  PubMed  Google Scholar 

  90. Cui J, Guo H, Li Y, Chen S, Zhu Y, Wang S, et al. Pelvic floor reconstruction after radical prostatectomy: a systematic review and meta-analysis of different surgical techniques. Sci Rep. 2017;7:2737. https://doi.org/10.1038/s41598-017-02991-8.

    Article  CAS  PubMed  Google Scholar 

  91. Antonelli A, Palumbo C, Veccia A, Fisogni S, Zamboni S, Furlan M, et al. Standard vs delayed ligature of the dorsal vascular complex during robot-assisted radical prostatectomy: results from a randomized controlled trial. J Robot Surg. 2019;13:253–60. https://doi.org/10.1007/s11701-018-0847-9.

    Article  PubMed  Google Scholar 

  92. Li H, Chen J, Cui Y, Liu P, Yi Z, Zu X. Delayed versus standard ligature of the dorsal venous complex during laparoscopic radical prostatectomy: a systematic review and meta-analysis of comparative studies. Int J Surg. 2019;68:117–25. https://doi.org/10.1016/j.ijsu.2019.06.015.

    Article  PubMed  Google Scholar 

  93. Feng T, Heulitt G, Lee JJ, Liao M, Li H-F, Porter JR. Randomised comparison of techniques for control of the dorsal venous complex during robot-assisted laparoscopic radical prostatectomy. BJU Int. 2020;126:586–94. https://doi.org/10.1111/bju.15133.

    Article  PubMed  Google Scholar 

  94. Li H, Liu C, Zhang H, Xu W, Liu J, Chen Y, et al. The use of unidirectional barbed suture for Urethrovesical anastomosis during robot-assisted radical prostatectomy: a systematic review and meta-analysis of efficacy and safety. PLoS One. 2015;10:e0131167. https://doi.org/10.1371/journal.pone.0131167.

    Article  CAS  PubMed  Google Scholar 

  95. Covas Moschovas M, Bhat S, Onol FF, Rogers T, Roof S, Mazzone E, et al. Modified apical dissection and lateral prostatic fascia preservation improves early postoperative functional recovery in robotic-assisted laparoscopic radical prostatectomy: results from a propensity score-matched analysis. Eur Urol. 2020; https://doi.org/10.1016/j.eururo.2020.05.041.

  96. Siltari A, Riikonen J, Murtola TJ. Preservation of Endopelvic fascia: effects on postoperative incontinence and sexual function – a randomized clinical trial. J Sex Med. 2021;18:327–38. https://doi.org/10.1016/j.jsxm.2020.11.003.

    Article  PubMed  Google Scholar 

  97. Wagaskar VG, Mittal A, Sobotka S, Ratnani P, Lantz A, Falagario UG, et al. Hood technique for robotic radical prostatectomy—preserving Periurethral anatomical structures in the space of Retzius and sparing the pouch of Douglas, enabling early return of continence without compromising surgical margin rates. Eur Urol. 2021;80:213–21. https://doi.org/10.1016/j.eururo.2020.09.044.

    Article  PubMed  Google Scholar 

  98. Eissa A, Zoeir A, Sighinolfi MC, Puliatti S, Bevilacqua L, Del Prete C, et al. “Real-time” assessment of surgical margins during radical prostatectomy: state-of-the-art. Clin Genitourin Cancer. 2020;18:95–104. https://doi.org/10.1016/j.clgc.2019.07.012.

    Article  PubMed  Google Scholar 

  99. Dinneen E, Haider A, Grierson J, Freeman A, Oxley J, Briggs T, et al. NeuroSAFE frozen section during robot-assisted radical prostatectomy: peri-operative and histopathological outcomes from the NeuroSAFE PROOF feasibility randomized controlled trial. BJU Int. 2021;127:676–86. https://doi.org/10.1111/bju.15256.

    Article  PubMed  Google Scholar 

  100. Rocco B, Sarchi L, Assumma S, Cimadamore A, Montironi R, Reggiani Bonetti L, et al. Digital frozen sections with fluorescence confocal microscopy during robot-assisted radical prostatectomy: surgical technique. Eur Urol. 2021; https://doi.org/10.1016/j.eururo.2021.03.021.

  101. Rocco B, Sighinolfi MC, Cimadamore A, Reggiani Bonetti L, Bertoni L, Puliatti S, et al. Digital frozen section of the prostate surface during radical prostatectomy: a novel approach to evaluate surgical margins. BJU Int. 2020;126:336–8. https://doi.org/10.1111/bju.15108.

    Article  PubMed  Google Scholar 

  102. Ogaya-Pinies G, Palayapalam-Ganapathi H, Rogers T, Hernandez-Cardona E, Rocco B, Coelho RF, et al. Can dehydrated human amnion/chorion membrane accelerate the return to potency after a nerve-sparing robotic-assisted radical prostatectomy? Propensity score-matched analysis. J Robot Surg. 2018;12:235–43. https://doi.org/10.1007/s11701-017-0719-8.

    Article  PubMed  Google Scholar 

  103. Porpiglia F, Checcucci E, Amparore D, Manfredi M, Massa F, Piazzolla P, et al. Three-dimensional elastic augmented-reality robot-assisted radical prostatectomy using Hyperaccuracy three-dimensional reconstruction technology: a step further in the identification of capsular involvement. Eur Urol. 2019;76:505–14. https://doi.org/10.1016/j.eururo.2019.03.037.

    Article  PubMed  Google Scholar 

  104. Bianchi L, Chessa F, Angiolini A, Cercenelli L, Lodi S, Bortolani B, et al. The use of augmented reality to guide the intraoperative frozen section during robot-assisted radical prostatectomy. Eur Urol. 2021; https://doi.org/10.1016/j.eururo.2021.06.020.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sighinolfi, M.C., Montorsi, F., Eissa, A., Patel, V. (2022). Outcomes of RALP: An Evidence-Based Approach. In: Wiklund, P., Mottrie, A., Gundeti, M.S., Patel, V. (eds) Robotic Urologic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-00363-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-00363-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-00362-2

  • Online ISBN: 978-3-031-00363-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics