Skip to main content

Current Imaging Modalities to Assess Prostate Cancer

  • Chapter
  • First Online:
Robotic Urologic Surgery

Abstract

Prostate cancer (PC) was traditionally suspected on digital rectal examination (DRE) or increased prostatic specific antigen (PSA) and was diagnosed on transrectal biopsy. However, as stage migration in PC has evolved into earlier detection, an increasing number of newly diagnosed patients will have a normal DRE and even a low-level PSA. In this setting, imaging modalities have become a key component in assessing the patient with suspected PC.

Conventional imaging strategies such as transrectal ultrasound, computed tomography (CT) of the abdomen and pelvis, and bone scan have traditionally been utilized to evaluate a patient with suspected PC. However, advances in imaging modalities and the emergence of newer technologies have expanded imaging studies to staging and assess disease progression in these patients.

This chapter reviews the current role of conventional and newer imaging modalities when assessing patients with PC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACR:

American College of Radiology

ADC:

Apparent-diffusion coefficient

AFS:

Anterior fibromuscular stroma

AS:

Active surveillance

ASCO:

American Society of Clinical Oncology

AUA:

American Urological Association

BPH:

Benign prostatic hyperplasia

bpMRI:

Biparametric magnetic resonance imaging

CEUS:

Contrast-enhanced ultrasound

csPC:

Clinically significant prostate cancer

CT:

Computed tomography

CTV:

Clinical target volumes

CZ:

Central zone

DCE:

Dynamic contrast-enhanced

DRE:

Digital rectal exam

DWI:

Diffusion-weighted imaging

EAU:

European Association of Urology

ECE:

Extracapsular extension

ERC:

Endorectal coil

ESUR:

European Society of Urogenital Radiology

FDG:

Fluorodeoxyglucose

GG:

Grade group

GS:

Gleason score

ISUP:

International Society of Urological Pathology

LN:

Lymph node

LND:

Lymph node dissection

MAD:

Maximum anteroposterior dimension

MLD:

Maximum longitudinal dimension

mpMRI:

Multiparametric magnetic resonance imaging

mpUS:

Multiparametric US

MRI:

Magnetic resonance imaging

MSKCC:

Memorial Sloan Kettering Cancer Center

MTD:

Maximum transverse dimension

NCCN:

National Comprehensive Cancer Network

NPV:

Negative predictive value

NVB:

Neurovascular bundles

PC:

Prostate cancer

PET:

Positron emission tomography

PI-RADS:

Prostate Imaging-Reporting and Data System

PRECISE:

Prostate cancer radiological estimation of change in sequential evaluation

PSA:

Prostatic specific antigen

PSAD:

Prostatic specific antigen density

PSMA:

Prostate-specific membrane antigen

PV:

Prostate volume

PZ:

Peripheral zone

RECIST:

Response Evaluation Criteria in Solid Tumors

RTOG:

Radiation Therapy Oncology Group

SD:

Standard deviation

SNR:

Signal-to-noise ratio

SPECT:

Single positron emission computed tomography

SV:

Seminal vesicles

SVI:

Seminal vesicle invasion

SWE:

Shear wave elastography

T1WI:

T1-weighted images

T2WI:

T2-weighted images

TBx:

Targeted biopsy

TP:

Transperineal

TR:

Transrectal

TRUS:

Transrectal ultrasound

TZ:

Transitional zone

US:

Ultrasound

Bibliography

Ultrasound

  1. Norberg M, Egevad L, Holmberg L, et al. The sextant protocol for ultrasound-guided core biopsies of the prostate underestimates the presence of cancer. Urology. 1997;50:562–6. https://doi.org/10.1016/S0090-4295(97)00306-3.

    Article  CAS  PubMed  Google Scholar 

  2. Beerlage HP, Aarnink RG, Ruijter ET, et al. Correlation of transrectal ultrasound, computer analysis of transrectal ultra- sound and histopathology of radical prostatectomy specimen. Prostate Cancer Prostatic Dis. 2001;4:56–62. https://doi.org/10.1038/sj.pcan.4500495.

    Article  CAS  PubMed  Google Scholar 

  3. Cheng S, Rifkin MD. Color Doppler imaging of the prostate: important adjunct to endorectal ultrasound of the prostate in the diagnosis of prostate cancer. Ultrasound Q. 2001;17:185–9. https://doi.org/10.1097/00013644-200109000-00008.

    Article  CAS  PubMed  Google Scholar 

  4. Correas JM, et al. Advanced ultrasound in the diagnosis of prostate cancer. World J Urol. 2021;39:661.

    PubMed  Google Scholar 

  5. Klotz L. Can high resolution micro-ultrasound replace MRI in the diagnosis of prostate cancer? Eur Urol Focus. 2020;6(2):419–23. https://doi.org/10.1016/j.euf.2019.11.006.

    Article  Google Scholar 

  6. Ghai S, Eure G, Fradet V, Hyndman ME, McGrath T, Wodlinger B, Pavlovich CP. Assessing cancer risk on novel 29 MHz micro-ultra- sound images of the prostate: creation of the micro-ultrasound protocol for prostate risk identification (PRIMUS). J Urol. 2016;196(2):562–9.

    PubMed  Google Scholar 

  7. Lughezzani G, et al. Comparison of the diagnostic accuracy of micro-ultrasound and magnetic resonance imaging/ultrasound fusion targeted biopsies for the diagnosis of clinically significant prostate cancer. Eur Urol Oncol. 2019;2:329.

    PubMed  Google Scholar 

  8. Cornud F, et al. MRI-directed high-frequency (29MhZ) TRUS-guided biopsies: initial results of a single-center study. Eur Radiol. 2020;30:4838.

    CAS  PubMed  Google Scholar 

  9. Pavlovich C, Hyndman ME, Eure G, et al. A multi-institutional randomized controlled trial comparing novel first generation high resolution micro-ultrasound with conventional frequency ultra- sound for transrectal prostate biopsy. J Urol. 2019;201:e394.

    Google Scholar 

  10. Klotz L, Lughezzani G, Maffei D, et al. Comparison of micro-ultrasound and multiparametric magnetic resonance imaging for prostate cancer: a multicenter, prospective analysis. Can Urol Assoc J. 2021 Jan;15(1):E11–6. https://doi.org/10.5489/cuaj.6712.

    Article  PubMed  Google Scholar 

  11. Halpern EJ, Gomella LG, Forsberg F, et al. Contrast enhanced transrectal ultrasound for the detection of prostate cancer: a randomized, double-blind trial of dutasteride pretreatment. J Urol. 2012;188:1739–45. https://doi.org/10.1016/j.juro.2012.07.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sidhu PS, Cantisani V, Dietrich CF, et al. The EFSUMB guidelines and recommendations for the clinical practice of contrast-enhanced ultrasound (CEUS) in non-hepatic applications: update 2017 (long version). Ultraschall Med. 2018;39:e2–e44. https://doi.org/10.1055/a-0586-1107.

    Article  PubMed  Google Scholar 

  13. Trabulsi EJ, Calio BP, Kamel SI, et al. Prostate contrast enhanced transrectal ultrasound evaluation of the prostate with whole-mount prostatectomy correlation. Urology. 2019;133:187–91. https://doi.org/10.1016/j.urology.2019.07.026.

    Article  PubMed  Google Scholar 

  14. Roy C, Buy X, Lang H, et al. Contrast enhanced color Doppler endorectal sonography of prostate: efficiency for detecting peripheral zone tumors and role for biopsy procedure. J Urol. 2003;170:69–72. https://doi.org/10.1097/01.ju.0000072342.01573.8d.

    Article  PubMed  Google Scholar 

  15. Yunkai Z, Yaqing C, Jun J, et al. Comparison of contrast- enhanced ultrasound targeted biopsy versus standard systematic biopsy for clinically significant prostate cancer detection: results of a prospective cohort study with 1024 patients. World J Urol. 2019;37:805–11. https://doi.org/10.1007/s00345-018-2441-1.

    Article  PubMed  Google Scholar 

  16. Phipps S, Yang THJ, Habib FK, et al. Measurement of tis- sue mechanical characteristics to distinguish between benign and malignant prostatic disease. Urology. 2005;66:447–50. https://doi.org/10.1016/j.urology.2005.03.017.

    Article  CAS  PubMed  Google Scholar 

  17. Hoyt K, Castaneda B, Zhang M, et al. Tissue elasticity properties as biomarkers for prostate cancer. Cancer Biomark Sect Dis Markers. 2008;4:213–25. https://doi.org/10.3233/cbm-2008-44-505.

    Article  Google Scholar 

  18. Zhang M, Nigwekar P, Castaneda B, et al. Quantitative characterization of viscoelastic properties of human prostate correlated with histology. Ultrasound Med Biol. 2008;34:1033–42. https://doi.org/10.1016/j.ultrasmedbio.2007.11.024.

    Article  PubMed  Google Scholar 

  19. Barr RG, Cosgrove D, Brock M, et al. WFUMB guidelines and recommendations on the clinical use of ultrasound elastography: part 5. Prostate Ultrasound Med Biol. 2017;43:27–48. https://doi.org/10.1016/j.ultrasmedbio.2016.06.020.

    Article  PubMed  Google Scholar 

  20. Ahmad S, et al. Transrectal quantitative shear wave elastography in the detection and characterization of prostate cancer. Surg Endosc. 2013;27(9):3280–7.

    PubMed  Google Scholar 

  21. Zhang M, Tang J, Luo Y, et al. Diagnostic performance of multiparametric transrectal ultrasound in localized prostate cancer: a comparative study with magnetic resonance imaging. J Ultrasound Med Off J Am Inst Ultrasound Med. 2019;38:1823–30.

    Google Scholar 

Computed Tomography Scan

  1. Saokar A, et al. Detection of lymph nodes in pelvic malignancies with computed tomography and magnetic resonance imaging. Clin Imaging. 2010;34(5):361–6.

    PubMed  Google Scholar 

  2. Lecouvet FE, et al. Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99 m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol. 2012;62(1):68–75.

    PubMed  Google Scholar 

  3. Harisinghani MG, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med. 2003;348:2491.

    PubMed  Google Scholar 

  4. Hovels AM, et al. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol. 2008;63:387.

    CAS  PubMed  Google Scholar 

  5. Abuzallouf S, et al. Baseline staging of newly diagnosed prostate cancer: a summary of the literature. J Urol. 2004;171:2122.

    PubMed  Google Scholar 

  6. Gabriele D, et al. Is there still a role for computed tomography and bone scintigraphy in prostate cancer staging? An analysis from the EUREKA-1 database. World J Urol. 2016;34:517.

    CAS  PubMed  Google Scholar 

Bone Scan

  1. Bjurlin MA, et al. Imaging and evaluation of patients with high-risk prostate cancer. Nat Rev Urol. 2015;12(11):617–28.

    PubMed  Google Scholar 

  2. Briganti A, et al. When to perform bone scan in patients with newly diagnosed prostate cancer: external validation of the currently available guidelines and proposal of a novel risk stratification tool. Eur Urol. 2010;57:551.

    PubMed  Google Scholar 

  3. Zhou J, Gou Z, Wu R, Yuan Y, Yu G, Zhao Y. Comparison of PSMA-PET/CT, choline-PET/CT, NaF-PET/CT, MRI, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a systematic review and meta-analysis. Skeletal Radiol. 2019;48(12):1915–24. https://doi.org/10.1007/s00256-019-03230-z.

    Article  PubMed  Google Scholar 

  4. Network (2021) N.C.C. NCCN guidelines version 2.2021 prostate cancer. www.NCCN.org

  5. EUA guidelines 2021. www.uroweb.org.

Magnetic Resonance Imaging

  1. Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, Macura KJ, et al. PI-RADS prostate imaging - reporting and data system: 2015, version 2. Eur Urol. 2016;69:16–40. https://doi.org/10.1016/j.eururo.2015.08.052.

    Article  PubMed  Google Scholar 

  2. Turkbey B, Rosenkrantz AB, Haider MA, Padhani AR, Villeirs G, Macura KJ, et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur Urol. 2019;76:340–51. https://doi.org/10.1016/j.eururo.2019.02.033.

    Article  PubMed  Google Scholar 

  3. Turkbey B, Huang R, Vourganti S, Trivedi H, Bernardo M, Yan P, et al. Age-related changes in prostate zonal volumes as measured by high-resolution magnetic resonance imaging (MRI): a cross-sectional study in over 500 patients. BJU Int. 2012;110:1642–7. https://doi.org/10.1111/j.1464-410X.2012.11469.x.

    Article  PubMed  Google Scholar 

  4. Ren J, Liu H, Wang H, Wen D, Huang X, Ren F, et al. MRI to predict prostate growth and development in children, adolescents and young adults. Eur Radiol. 2015;25:516–22. https://doi.org/10.1007/s00330-014-3372-x.

    Article  PubMed  Google Scholar 

  5. Coakley FV, Hricak H. Radiologic anatomy of the prostate gland: a clinical approach. Radiol Clin N Am. 2000;38:15–30. https://doi.org/10.1016/s0033-8389(05)70147-0.

    Article  CAS  PubMed  Google Scholar 

  6. McNeal JE. The zonal anatomy of the prostate. Prostate. 1981;2:35–49. https://doi.org/10.1002/pros.2990020105.

    Article  CAS  PubMed  Google Scholar 

  7. Selman SH. The McNeal prostate: a review. Urology. 2011;78:1224–8. https://doi.org/10.1016/j.urology.2011.07.1395.

    Article  PubMed  Google Scholar 

  8. Paño B, Sebastià C, Buñesch L, Mestres J, Salvador R, Macías NG, et al. Pathways of lymphatic spread in male urogenital pelvic malignancies. Radiogr Rev Publ Radiol Soc N Am Inc. 2011;31:135–60. https://doi.org/10.1148/rg.311105072.

    Article  Google Scholar 

  9. Aaron L, Franco OE, Hayward SW. Review of prostate anatomy and embryology and the etiology of benign prostatic hyperplasia. Urol Clin North Am. 2016;43:279–88. https://doi.org/10.1016/j.ucl.2016.04.012.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fine SW, Reuter VE. Anatomy of the prostate revisited: implications for prostate biopsy and zonal origins of prostate cancer. Histopathology. 2012;60:142–52. https://doi.org/10.1111/j.1365-2559.2011.04004.x.

    Article  PubMed  Google Scholar 

  11. Semple JE. Surgical capsule of the benign enlargement of the prostate. Its development and action. Br Med J. 1963;1:1640–3. https://doi.org/10.1136/bmj.1.5346.1640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vargas HA, Akin O, Franiel T, Goldman DA, Udo K, Touijer KA, et al. Normal central zone of the prostate and central zone involvement by prostate cancer: clinical and MR imaging implications. Radiology. 2012;262:894–902. https://doi.org/10.1148/radiol.11110663.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kitzing YX, Prando A, Varol C, Karczmar GS, Maclean F, Oto A. Benign conditions that mimic prostate carcinoma: MR imaging features with histopathologic correlation. Radiogr Rev Publ Radiol Soc N Am Inc. 2016;36:162–75. https://doi.org/10.1148/rg.2016150030.

    Article  Google Scholar 

  14. Barkovich EJ, Shankar PR, Westphalen AC. A systematic review of the existing prostate imaging reporting and data system version 2 (PI-RADSv2) literature and subset meta-analysis of PI-RADSv2 categories stratified by gleason scores. AJR Am J Roentgenol. 2019;212:847–54. https://doi.org/10.2214/AJR.18.20571.

    Article  PubMed  Google Scholar 

  15. McNeal J. Pathology of benign prostatic hyperplasia. Insight into etiology. Urol Clin North Am. 1990;17:477–86.

    CAS  PubMed  Google Scholar 

  16. Sanda MG, Cadeddu JA, Kirkby E, Chen RC, Crispino T, Fontanarosa J, et al. Clinically localized prostate cancer: AUA/ASTRO/SUO guideline. Part II: recommended approaches and details of specific care options. J Urol. 2018;199:990–7. https://doi.org/10.1016/j.juro.2018.01.002.

    Article  PubMed  Google Scholar 

  17. Mottet N, Bellmunt J, Bolla M, Briers E, Cumberbatch MG, De Santis M, et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol. 2017;71:618–29. https://doi.org/10.1016/j.eururo.2016.08.003.

    Article  PubMed  Google Scholar 

  18. Mohler JL, Antonarakis ES, Armstrong AJ, D'Amico AV, Davis BJ, Dorff T, et al. Prostate cancer, version 2.2019, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2019;17:479–505. https://doi.org/10.6004/jnccn.2019.0023.

    Article  CAS  Google Scholar 

  19. Fam MM, Yabes JG, Macleod LC, Bandari J, Turner RM, Lopa SH, et al. Increasing utilization of multiparametric magnetic resonance imaging in prostate cancer active surveillance. Urology. 2019;130:99–105. https://doi.org/10.1016/j.urology.2019.02.037.

    Article  PubMed  Google Scholar 

  20. Fütterer JJ, Briganti A, De Visschere P, Emberton M, Giannarini G, Kirkham A, et al. Can clinically significant prostate cancer be detected with multiparametric magnetic resonance imaging? A systematic review of the literature. Eur Urol. 2015;68:1045–53. https://doi.org/10.1016/j.eururo.2015.01.013.

    Article  PubMed  Google Scholar 

  21. Schoots IG, Petrides N, Giganti F, Bokhorst LP, Rannikko A, Klotz L, et al. Magnetic resonance imaging in active surveillance of prostate cancer: a systematic review. Eur Urol. 2015;67:627–36. https://doi.org/10.1016/j.eururo.2014.10.050.

    Article  PubMed  Google Scholar 

  22. Barentsz JO, Richenberg J, Clements R, Choyke P, Verma S, Villeirs G, et al. ESUR prostate MR guidelines 2012. Eur Radiol. 2012;22:746–57. https://doi.org/10.1007/s00330-011-2377-y.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dickinson L, Ahmed HU, Allen C, Barentsz JO, Carey B, Futterer JJ, et al. Scoring systems used for the interpretation and reporting of multiparametric MRI for prostate cancer detection, localization, and characterization: could standardization lead to improved utilization of imaging within the diagnostic pathway? J Magn Reson Imaging. 2013;37:48–58. https://doi.org/10.1002/jmri.23689.

    Article  PubMed  Google Scholar 

  24. Vaché T, Bratan F, Mège-Lechevallier F, Roche S, Rabilloud M, Rouvière O. Characterization of prostate lesions as benign or malignant at multiparametric MR imaging: comparison of three scoring systems in patients treated with radical prostatectomy. Radiology. 2014;272:446–55. https://doi.org/10.1148/radiol.14131584.

    Article  PubMed  Google Scholar 

  25. Renard-Penna R, Mozer P, Cornud F, Barry-Delongchamps N, Bruguière E, Portalez D, et al. Prostate imaging reporting and data system and likert scoring system: multiparametric MR imaging validation study to screen patients for initial biopsy. Radiology. 2015;275:458–68. https://doi.org/10.1148/radiol.14140184.

    Article  PubMed  Google Scholar 

  26. Zhai L, Fan Y, Meng Y, Feng X, Yu W, Jin J. The role of Prostate Imaging Reporting and Data System score in Gleason 3 + 3 active surveillance candidates enrollment: a diagnostic meta-analysis. Prostate Cancer Prostatic Dis. 2019;22:235–43. https://doi.org/10.1038/s41391-018-0111-4.

    Article  PubMed  Google Scholar 

  27. Wang AZ, O'Conno LP, Yerram NK, Long L, Zeng J, Mehralivand S, et al. PI-RADS® category as a predictor of progression to unfavorable risk prostate cancer in men on active surveillance. J Urol. 2020;204:1229–35. https://doi.org/10.1097/JU.0000000000001307.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Moore CM, Giganti F, Albertsen P, Allen C, Bangma C, Briganti A, et al. Reporting magnetic resonance imaging in men on active surveillance for prostate cancer: the PRECISE recommendations-a report of a european school of oncology task force. Eur Urol. 2017;71:648–55. https://doi.org/10.1016/j.eururo.2016.06.011.

    Article  PubMed  Google Scholar 

  29. Giganti F, Stabile A, Stavrinides V, Osinibi E, Retter A, Orczyk C, et al. Natural history of prostate cancer on active surveillance: stratification by MRI using the PRECISE recommendations in a UK cohort. Eur Radiol. 2021;31:1644–55. https://doi.org/10.1007/s00330-020-07256-z.

    Article  PubMed  Google Scholar 

  30. Recabal P, Assel M, Sjoberg DD, Lee D, Laudone VP, Touijer K, et al. The efficacy of multiparametric magnetic resonance imaging and magnetic resonance imaging targeted biopsy in risk classification for patients with prostate cancer on active surveillance. J Urol. 2016;196:374–81. https://doi.org/10.1016/j.juro.2016.02.084.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chesnut GT, Vertosick EA, Benfante N, Sjoberg DD, Fainberg J, Lee T, et al. Role of changes in magnetic resonance imaging or clinical stage in evaluation of disease progression for men with prostate cancer on active surveillance. Eur Urol. 2020;77:501–7. https://doi.org/10.1016/j.eururo.2019.12.009.

    Article  PubMed  Google Scholar 

  32. Stavrinides V, Giganti F, Trock B, Punwani S, Allen C, Kirkham A, et al. Five-year outcomes of magnetic resonance imaging-based active surveillance for prostate cancer: a large cohort study. Eur Urol. 2020;78:443–51. https://doi.org/10.1016/j.eururo.2020.03.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bryant RJ, Yang B, Philippou Y, Lam K, Obiakor M, Ayers J, et al. Does the introduction of prostate multiparametric magnetic resonance imaging into the active surveillance protocol for localized prostate cancer improve patient reclassification? BJU Int. 2018;122:794–800. https://doi.org/10.1111/bju.14248.

    Article  PubMed  Google Scholar 

  34. Schoots IG, Nieboer D, Giganti F, Moore CM, Bangma CH, Roobol MJ. Is magnetic resonance imaging-targeted biopsy a useful addition to systematic confirmatory biopsy in men on active surveillance for low-risk prostate cancer? A systematic review and meta-analysis. BJU Int. 2018;122:946–58. https://doi.org/10.1111/bju.14358.

    Article  PubMed  Google Scholar 

  35. Klotz L, Pond G, Loblaw A, Sugar L, Moussa M, Berman D, et al. Randomized study of systematic biopsy versus magnetic resonance imaging and targeted and systematic biopsy in men on active surveillance (ASIST): 2-year postbiopsy follow-up. Eur Urol. 2020;77:311–7. https://doi.org/10.1016/j.eururo.2019.10.007.

    Article  PubMed  Google Scholar 

  36. Meyer AR, Mamawala M, Winoker JS, Landis P, Epstein JI, Macura KJ, et al. Transperineal prostate biopsy improves the detection of clinically significant prostate cancer among men on active surveillance. J Urol. 2021;205:1069–74. https://doi.org/10.1097/JU.0000000000001523.

    Article  PubMed  Google Scholar 

  37. Stonier T, Tin AL, Sjoberg DD, Jibara G, Vickers AJ, Fine S, et al. Selecting patients with favorable risk, grade group 2 prostate cancer for active surveillance-does magnetic resonance imaging have a role? J Urol. 2021;205:1063–8. https://doi.org/10.1097/JU.0000000000001519.

    Article  CAS  PubMed  Google Scholar 

  38. de Rooij M, Hamoen EHJ, Witjes JA, Barentsz JO, Rovers MM. Accuracy of magnetic resonance imaging for local staging of prostate cancer: a diagnostic meta-analysis. Eur Urol. 2016;70:233–45. https://doi.org/10.1016/j.eururo.2015.07.029.

    Article  PubMed  Google Scholar 

  39. Cornud F, Flam T, Chauveinc L, Hamida K, Chrétien Y, Vieillefond A, et al. Extraprostatic spread of clinically localized prostate cancer: factors predictive of pT3 tumor and of positive endorectal MR imaging examination results. Radiology. 2002;224:203–10. https://doi.org/10.1148/radiol.2241011001.

    Article  PubMed  Google Scholar 

  40. Jager GJ, Ruijter ET, van de Kaa CA, de la Rosette JJ, Oosterhof GO, Thornbury JR, et al. Local staging of prostate cancer with endorectal MR imaging: correlation with histopathology. AJR Am J Roentgenol. 1996;166:845–52. https://doi.org/10.2214/ajr.166.4.8610561.

    Article  CAS  PubMed  Google Scholar 

  41. Heijmink SWTPJ, Fütterer JJ, Hambrock T, Takahashi S, Scheenen TWJ, Huisman HJ, et al. Prostate cancer: body-array versus endorectal coil MR imaging at 3 T--comparison of image quality, localization, and staging performance. Radiology. 2007;244:184–95. https://doi.org/10.1148/radiol.2441060425.

    Article  PubMed  Google Scholar 

  42. Dell’Oglio P, Stabile A, Dias BH, Gandaglia G, Mazzone E, Fossati N, et al. Impact of multiparametric MRI and MRI-targeted biopsy on pre-therapeutic risk assessment in prostate cancer patients candidate for radical prostatectomy. World J Urol. 2019;37:221–34. https://doi.org/10.1007/s00345-018-2360-1.

    Article  PubMed  Google Scholar 

  43. Gandaglia G, Ploussard G, Valerio M, Mattei A, Fiori C, Roumiguié M, et al. The key combined value of multiparametric magnetic resonance imaging, and magnetic resonance imaging-targeted and concomitant systematic biopsies for the prediction of adverse pathological features in prostate cancer patients undergoing radical prostatectomy. Eur Urol. 2020;77:733–41. https://doi.org/10.1016/j.eururo.2019.09.005.

    Article  PubMed  Google Scholar 

  44. Mottet N, Cornford P, van den Bergh RCN, Briers, E, Expert Patient Advocate, De Santis M, et al. EAU - EANM - ESTRO - ESUR - ISUP - SIOG Guidelines on Prostate Cancer. EAU Guidel Off Arnh Neth 2021. http://uroweb.org/guidelines/compilations-of-all-guidelines/.

  45. Hövels AM, Heesakkers RAM, Adang EM, Jager GJ, Strum S, Hoogeveen YL, et al. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol. 2008;63:387–95. https://doi.org/10.1016/j.crad.2007.05.022.

    Article  PubMed  Google Scholar 

  46. Thoeny HC, Froehlich JM, Triantafyllou M, Huesler J, Bains LJ, Vermathen P, et al. Metastases in normal-sized pelvic lymph nodes: detection with diffusion-weighted MR imaging. Radiology. 2014;273:125–35. https://doi.org/10.1148/radiol.14132921.

    Article  PubMed  Google Scholar 

  47. Abuzallouf S, Dayes I, Lukka H. Baseline staging of newly diagnosed prostate cancer: a summary of the literature. J Urol. 2004;171:2122–7. https://doi.org/10.1097/01.ju.0000123981.03084.06.

    Article  PubMed  Google Scholar 

  48. Kiss B, Thoeny HC, Studer UE. Current status of lymph node imaging in bladder and prostate cancer. Urology. 2016;96:1–7. https://doi.org/10.1016/j.urology.2016.02.014.

    Article  PubMed  Google Scholar 

  49. Peabody H, Lane BR, Qi J, Kim T, Montie JE, Moriarity A, et al. Limitations of abdominopelvic CT and multiparametric MR imaging for detection of lymph node metastases prior to radical prostatectomy. World J Urol. 2021;39:779–85. https://doi.org/10.1007/s00345-020-03227-7.

    Article  PubMed  Google Scholar 

  50. Prostate cancer nomograms: dynamic prostate cancer nomogram: coefficients | Memorial Sloan Kettering Cancer Center n.d. https://www.mskcc.org/nomograms/prostate/pre_op/coefficients (accessed June 26, 2021).

  51. Briganti A, Larcher A, Abdollah F, Capitanio U, Gallina A, Suardi N, et al. Updated nomogram predicting lymph node invasion in patients with prostate cancer undergoing extended pelvic lymph node dissection: the essential importance of percentage of positive cores. Eur Urol. 2012;61:480–7. https://doi.org/10.1016/j.eururo.2011.10.044.

    Article  PubMed  Google Scholar 

  52. Gandaglia G, Fossati N, Zaffuto E, Bandini M, Dell’Oglio P, Bravi CA, et al. Development and internal validation of a novel model to identify the candidates for extended pelvic lymph node dissection in prostate cancer. Eur Urol. 2017;72:632–40. https://doi.org/10.1016/j.eururo.2017.03.049.

    Article  PubMed  Google Scholar 

  53. Draulans C, Everaerts W, Isebaert S, Van Bruwaene S, Gevaert T, Oyen R, et al. Development and external validation of a multiparametric magnetic resonance imaging and international society of urological pathology based add-on prediction tool to identify prostate cancer candidates for pelvic lymph node dissection. J Urol. 2020;203:713–8. https://doi.org/10.1097/JU.0000000000000652.

    Article  PubMed  Google Scholar 

  54. Messiou C, Collins DJ, Giles S, de Bono JS, Bianchini D, de Souza NM. Assessing response in bone metastases in prostate cancer with diffusion weighted MRI. Eur Radiol. 2011;21:2169–77. https://doi.org/10.1007/s00330-011-2173-8.

    Article  CAS  PubMed  Google Scholar 

  55. Gutzeit A, Doert A, Froehlich JM, Eckhardt BP, Meili A, Scherr P, et al. Comparison of diffusion-weighted whole body MRI and skeletal scintigraphy for the detection of bone metastases in patients with prostate or breast carcinoma. Skelet Radiol. 2010;39:333–43. https://doi.org/10.1007/s00256-009-0789-4.

    Article  Google Scholar 

  56. Lecouvet FE, El Mouedden J, Collette L, Coche E, Danse E, Jamar F, et al. Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol. 2012;62:68–75. https://doi.org/10.1016/j.eururo.2012.02.020.

    Article  PubMed  Google Scholar 

  57. Pasoglou V, Larbi A, Collette L, Annet L, Jamar F, Machiels J-P, et al. One-step TNM staging of high-risk prostate cancer using magnetic resonance imaging (MRI): toward an upfront simplified “all-in-one” imaging approach? Prostate. 2014;74:469–77. https://doi.org/10.1002/pros.22764.

    Article  CAS  PubMed  Google Scholar 

  58. Hicks RJ, Murphy DG, Williams SG. Seduction by sensitivity: reality, illusion, or delusion? The challenge of assessing outcomes after PSMA imaging selection of patients for treatment. J Nucl Med Off Publ Soc Nucl Med. 2017;58:1969–71. https://doi.org/10.2967/jnumed.117.198812.

    Article  CAS  Google Scholar 

  59. Ploussard G, Staerman F, Pierrevelcin J, Saad R, Beauval J-B, Roupret M, et al. Predictive factors of oncologic outcomes in patients who do not achieve undetectable prostate specific antigen after radical prostatectomy. J Urol. 2013;190:1750–6. https://doi.org/10.1016/j.juro.2013.04.073.

    Article  PubMed  Google Scholar 

  60. Wiegel T, Bartkowiak D, Bottke D, Thamm R, Hinke A, Stöckle M, et al. Prostate-specific antigen persistence after radical prostatectomy as a predictive factor of clinical relapse-free survival and overall survival: 10-year data of the ARO 96-02 trial. Int J Radiat Oncol Biol Phys. 2015;91:288–94. https://doi.org/10.1016/j.ijrobp.2014.09.039.

    Article  PubMed  Google Scholar 

  61. Zagars GK, Pollack A. Kinetics of serum prostate-specific antigen after external beam radiation for clinically localized prostate cancer. Radiother Oncol J Eur Soc Ther Radiol Oncol. 1997;44:213–21. https://doi.org/10.1016/s0167-8140(97)00123-0.

    Article  CAS  Google Scholar 

  62. Pound CR, Partin AW, Eisenberger MA, Chan DW, Pearson JD, Walsh PC. Natural history of progression after PSA elevation following radical prostatectomy. JAMA. 1999;281:1591–7. https://doi.org/10.1001/jama.281.17.1591.

    Article  CAS  PubMed  Google Scholar 

  63. Eiber M, Holzapfel K, Ganter C, Epple K, Metz S, Geinitz H, et al. Whole-body MRI including diffusion-weighted imaging (DWI) for patients with recurring prostate cancer: technical feasibility and assessment of lesion conspicuity in DWI. J Magn Reson Imaging JMRI. 2011;33:1160–70. https://doi.org/10.1002/jmri.22542.

    Article  PubMed  Google Scholar 

  64. Liauw SL, Pitroda SP, Eggener SE, Stadler WM, Pelizzari CA, Vannier MW, et al. Evaluation of the prostate bed for local recurrence after radical prostatectomy using endorectal magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 2013;85:378–84. https://doi.org/10.1016/j.ijrobp.2012.05.015.

    Article  PubMed  Google Scholar 

  65. Linder BJ, Kawashima A, Woodrum DA, Tollefson MK, Karnes J, Davis BJ, et al. Early localization of recurrent prostate cancer after prostatectomy by endorectal coil magnetic resonance imaging. Can J Urol. 2014;21:7283–9.

    PubMed  Google Scholar 

  66. Kitajima K, Murphy RC, Nathan MA, Froemming AT, Hagen CE, Takahashi N, et al. Detection of recurrent prostate cancer after radical prostatectomy: comparison of 11C-choline PET/CT with pelvic multiparametric MR imaging with endorectal coil. J Nucl Med Off Publ Soc Nucl Med. 2014;55:223–32. https://doi.org/10.2967/jnumed.113.123018.

    Article  CAS  Google Scholar 

  67. Achard V, Lamanna G, Denis A, De Perrot T, Mainta IC, Ratib O, et al. Recurrent prostate cancer after radical prostatectomy: restaging performance of 18F-choline hybrid PET/MRI. Med Oncol Northwood Lond Engl. 2019;36:67. https://doi.org/10.1007/s12032-019-1291-z.

    Article  CAS  Google Scholar 

  68. Rouvière O, Vitry T, Lyonnet D. Imaging of prostate cancer local recurrences: why and how? Eur Radiol. 2010;20:1254–66. https://doi.org/10.1007/s00330-009-1647-4.

    Article  PubMed  Google Scholar 

  69. Donati OF, Jung SI, Vargas HA, Gultekin DH, Zheng J, Moskowitz CS, et al. Multiparametric prostate MR imaging with T2-weighted, diffusion-weighted, and dynamic contrast-enhanced sequences: are all pulse sequences necessary to detect locally recurrent prostate cancer after radiation therapy? Radiology. 2013;268:440–50. https://doi.org/10.1148/radiol.13122149.

    Article  PubMed  Google Scholar 

  70. Abd-Alazeez M, Ramachandran N, Dikaios N, Ahmed HU, Emberton M, Kirkham A, et al. Multiparametric MRI for detection of radiorecurrent prostate cancer: added value of apparent diffusion coefficient maps and dynamic contrast-enhanced images. Prostate Cancer Prostatic Dis. 2015;18:128–36. https://doi.org/10.1038/pcan.2014.55.

    Article  CAS  PubMed  Google Scholar 

  71. Alonzo F, Melodelima C, Bratan F, Vitry T, Crouzet S, Gelet A, et al. Detection of locally radio-recurrent prostate cancer at multiparametric MRI: Can dynamic contrast-enhanced imaging be omitted? Diagn Interv Imaging. 2016;97:433–41. https://doi.org/10.1016/j.diii.2016.01.008.

    Article  CAS  PubMed  Google Scholar 

  72. Dinis Fernandes C, Ghobadi G, van der Poel HG, de Jong J, Heijmink SWTPJ, Schoots I, et al. Quantitative 3-T multiparametric MRI and step-section pathology of recurrent prostate cancer patients after radiation therapy. Eur Radiol. 2019;29:4160–8. https://doi.org/10.1007/s00330-018-5819-y.

    Article  PubMed  Google Scholar 

  73. Ceci F, Castellucci P, Graziani T, Schiavina R, Brunocilla E, Mazzarotto R, et al. 11C-choline PET/CT detects the site of relapse in the majority of prostate cancer patients showing biochemical recurrence after EBRT. Eur J Nucl Med Mol Imaging. 2014;41:878–86. https://doi.org/10.1007/s00259-013-2655-9.

    Article  CAS  PubMed  Google Scholar 

  74. Panebianco V, Villeirs G, Weinreb JC, Turkbey BI, Margolis DJ, Richenberg J, et al. Prostate magnetic resonance imaging for local recurrence reporting (PI-RR): international consensus-based guidelines on multiparametric magnetic resonance imaging for prostate cancer recurrence after radiation therapy and radical prostatectomy. Eur Urol Oncol. 2021;S2588-9311(21):00027–4. https://doi.org/10.1016/j.euo.2021.01.003.

    Article  Google Scholar 

Positron Emission Tomography CT

  1. Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol. 2005;20:654–62.

    Google Scholar 

  2. Liu Y, Zuckier LS, Ghesani NV. Dominant uptake of fatty acid over glucose by prostate cells: a potential new diagnostic and therapeutic approach. Anticancer Res. 2010;30:369–74.

    PubMed  Google Scholar 

  3. Jadvar H, Ye W, Groshen S, Conti PS. (F-18)-Fluorodeoxyglucose PET-CT of the normal prostate gland. Ann Nucl Med. 2008;22:787–93.

    PubMed  PubMed Central  Google Scholar 

  4. Bertagna F, Sadeghi R, Giovanella L, Treglia G. Incidental uptake of 18F-fluorodeoxyglucose in the prostate gland: systematic review and meta-analysis on prevalence and risk of malignancy. Nuklearmedizin. 2014;53:249–58.

    CAS  PubMed  Google Scholar 

  5. Kang PM, Seo WI, Lee SS, Bae SK, Kwak HS, Min K, et al. Incidental abnormal FDG uptake in the prostate on 18-fluoro-2-deoxyglucose positron emission tomography-computed tomography. Asian Pac J Cancer Prev. 2014;15:8699–703.

    PubMed  Google Scholar 

  6. Seino H, Ono S, Miura H, Morohashi S, Wu Y, Tsushuma F, et al. Incidental prostate 18F-FDG uptake without calcification indicates possibility of prostate cancer. Oncol Rep. 2014;31:1517–22.

    PubMed  PubMed Central  Google Scholar 

  7. Jadvar H. Molecular imaging of prostate cancer with (F-18)-fluorodeoxyglucose PET. Nat Rev Urol. 2009;6:317–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Jadvar H. Imaging evaluation of prostate cancer with 18Ffluorodeoxyglucose PET/CT: utility and limitations. Eur J Nucl Med Mol Imaging. 2013;40:S5–S10.

    PubMed  Google Scholar 

  9. Minamimoto R, Uemura H, Sano F, Tera H, Nagashima Y, Yamanaka S, et al. The potential of FDG PET/CT for detecting prostate cancer in patients with an elevated serum PSA level. Ann Nucl Med. 2011;25:21–7.

    CAS  PubMed  Google Scholar 

  10. Minamimoto R, Senda M, Jinnouchi S, Terauchi T, Yoshida T, Murano T, et al. The current status of an FDG-PET cancer screening program in Japan based on a 4-year (2006–2009) nationwide survey. Ann Nucl Med. 2013;27:46–57.

    PubMed  Google Scholar 

  11. Beauregard JM, Blouin AC, Fradet V, Caron A, Fradet Y, Lemay C, et al. FDG-PET/CT for pre-operative staging and prognostic stratification of patients with high-grade prostate cancer at biopsy. Cancer Imaging. 2015;15:2.

    PubMed  PubMed Central  Google Scholar 

  12. Jadvar H, Desai B, Ji L, Conti PS, Dorff TB, Groshen SG, et al. Prospective evaluation of 18F-NaF and 18F-FDG PET/CT in detection of occult metastatic disease in biochemical recurrence of prostate cancer. Clin Nucl Med. 2012;37:637–43.

    PubMed  PubMed Central  Google Scholar 

  13. Ramírez de Molina A, Gutiérrez R, Ramos MA, Silva JM, Silva J, Bonilla F, et al. Increased choline kinase activity in human breast carcinomas: clinical evidence for a potential novel antitumor strategy. Oncogene. 2002;21:4317–22.

    PubMed  Google Scholar 

  14. von Eyben FE, Kairemo K. Meta-analysis of 11C-choline and 18F-choline PET/CT for management of patients with prostate cancer. Nucl Med Commun. 2014;35:221–30.

    Google Scholar 

  15. Bundschuh RA, Wendl CM, Weirich G, Eiber M, Souvatzoglou M, Trieber U, et al. Tumour volume delineation in prostate cancer assessed by (11C)choline PET/ CT: validation with surgical specimens. Eur J Nucl Med Mol Imaging. 2013;40:824–31.

    PubMed  Google Scholar 

  16. Evangelista L, Cimitan M, Zattoni F, Guttilla A, Zattoni F, Saladini G. Comparison between conventional imaging (abdominal-pelvic computed tomography and bone scan) and (18F)choline positron emission tomography/computed tomography imaging for the initial staging of patients with intermediate- to high-risk prostate cancer: a retrospective analysis. Scand J Urol. 2015;49:345–53.

    CAS  PubMed  Google Scholar 

  17. Poulsen MH, Petersen H, Høilund-Carlsen PF, Jakobsen JS, Gerke O, Karstoft J, et al. Spine metastases in prostate cancer: comparison of technetium-99m- MDP whole-body bone scintigraphy, (18F)choline positron emission tomography(PET)/computed tomography (CT) and (18F)NaF PET/CT. BJU Int. 2014;114:818–23.

    CAS  PubMed  Google Scholar 

  18. Shen G, Deng H, Hu S, Jia Z. Comparison of choline-PET/ CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a meta-analysis. Skelet Radiol. 2014;43:1503–13.

    Google Scholar 

  19. Fanti S, Minozzi S, Castellucci P, Balduzzi S, Herrmann K, Krause BJ, et al. PET/CT with 11C-choline for evaluation of prostate cancer patients with biochemical recurrence: meta-analysis and critical review of available data. Eur J Nucl Med Mol Imaging. 2016;43:55–69.

    CAS  PubMed  Google Scholar 

  20. Giovacchini G, Picchio M, Coradeschi E, Bettinardi V, Gianolli L, Scattoni V, et al. Predictive factors of (11C)choline PET/CT in patients with biochemical failure after radical prostatectomy. Eur J Nucl Med Mol Imaging. 2010;37:301–9.

    PubMed  Google Scholar 

  21. Evangelista L, Zattoni F, Guttilla A, Saladini G, Zattoni F, Colletti PM, et al. Choline PET or PET/ CT and biochemical relapse of prostate cancer: a systematic review and meta-analysis. Clin Nucl Med. 2013;38:305–14.

    PubMed  Google Scholar 

  22. Mottet N, Cornford P, van den Bergh RCN, Briers E, De Santis M, Gillessen S, et al. EAU prostate cancer guidelines 2021. European association of urology website. https://uroweb.org/guideline/prostate-cancer/. Updated 2021. Accessed July 21, 2021.

  23. McParland BJ, Wall A, Johansson S, Sørensen J. The clinical safety, biodistribution and internal radiation dosimetry of (18F) fluciclovine in healthy adult volunteers. Eur J Nucl Med Mol Imaging. 2013;40:1256–64.

    CAS  PubMed  Google Scholar 

  24. Seierstad T, Hole KH, Tulipan AJ, Stromme H, Lilleby W, Revheim ME, et al. 18F-Fluciclovine PET for assessment of prostate cancer with histopathology as reference standard: a systematic review. PET Clin. 2021;16:167–76.

    PubMed  Google Scholar 

  25. Alemozaffar M, Akintayo AA, Abiodun-Ojo OA, Patil D, Saeed F, Huang Y, et al. 18F fluciclovine PET/CT for preoperative staging in patients with intermediate to high risk primary prostate cancer. J Urol. 2020;204:1–7.

    Google Scholar 

  26. Biscontini G, Romagnolo C, Cottignoli C, Palucci A, Fringuelli FM, Caldarella C, et al. 18F-Fluciclovine positron emission tomography in prostate cancer: a systematic review and diagnostic meta-analysis. Diagnostics (Basel). 2021;11:304.

    CAS  PubMed  Google Scholar 

  27. Rais-Bahrami S, Efstathiou A, Turnbull CM, Camper SB, Kenwright A, Schuster AM, et al. 18F-Fluciclovine PET/CT performance in biochemical recurrence of prostate cancer: a systematic review. Prostate Cancer Prostatic Dis. 2021;24(4):997–1006. https://doi.org/10.1038/s41391-021-00382-9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nanni C, Zanoni L, Pultrone C, Schiavina R, Brunocilla E, Lodi F, et al. 18F-FACBC (anti1- amino-3-18F-fluorocyclobutane-1-carboxylic acid) versus 11C-choline PET/CT in prostate cancer relapse: results of a prospective trial. Eur J Nucl Med Mol Imaging. 2016;43:1601–10.

    CAS  PubMed  Google Scholar 

  29. Yao V, Berkman CE, Choi JK, O’Keefe DS, Bacich DJ. Expression of prostate-specific membrane antigen (PSMA), increases cell folate uptake and proliferation and suggests a novel role for PSMA in the uptake of the non-polyglutamated folate, folic acid. Prostate. 2010;70:305–16.

    CAS  PubMed  Google Scholar 

  30. Bouchelouche K, Turkbey B, Choyke PL. PSMA PET and radionuclide therapy in prostate cancer. Semin Nucl Med. 2016;46:522–35.

    PubMed  PubMed Central  Google Scholar 

  31. Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res. 1997;3:81–5.

    CAS  PubMed  Google Scholar 

  32. Rajasekaran SA, Anilkumar G, Oshima E, Bowie JU, Liu H, Heston W, et al. A novel cytoplasmic tail MXXXL motif mediates the internalization of prostate-specific membrane antigen. Mol Biol Cell. 2003;14:4835–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Chang SS. Overview of prostate-specific membrane antigen. Rev Urol. 2004;6:S13–8.

    PubMed  PubMed Central  Google Scholar 

  34. Mannweiler S, Amersdorfer P, Trajanoski S, Terrett JA, King D, Mehes G. Heterogeneity of prostate-specific membrane antigen (PSMA) expression in prostate carcinoma with distant metastasis. Pathol Oncol Res. 2009;15:167–72.

    CAS  PubMed  Google Scholar 

  35. Petronis JD, Regan F, Lin K. Indium-111 capromab pendetide (ProstaScint) imaging to detect recurrent and metastatic prostate cancer. Clin Nucl Med. 1998;23:672–7.

    CAS  PubMed  Google Scholar 

  36. Deb N, Goris M, Trisler K, Fowler S, Saal J, Ning S, et al. Treatment of hormone-refractory prostate cancer with 90Y-CYT-356 monoclonal antibody. Clin Cancer Res. 1996;2:1289–97.

    CAS  PubMed  Google Scholar 

  37. Pandit-Taskar N, O’Donoghue JA, Beylergil V, Lyashchenko S, Ruan S, Solomon SB, et al. 89Zr-huJ591 immuno-PET imaging in patients with advanced metastatic prostate cancer. Eur J Nucl Med Mol Imaging. 2014;41:2093–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tagawa ST, Milowsky MI, Morris M, Vallabhajosula S, Christos P, Akhtar NH, et al. Phase II study of Lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer. Clin Cancer Res. 2013;19:5182–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Afshar-Oromieh A, Haberkorn U, Eder M, Eisenhut M, Zechmann CM. (68Ga)Gallium-labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: comparison with 18F-FECH. Eur J Nucl Med Mol Imaging. 2012;39:1085–6.

    CAS  PubMed  Google Scholar 

  40. Wallitt KL, Dubash S, Tam HH, Khan S, Barwick TD. Clinical PET imaging in prostate cancer. Radiographics. 2017;37:1512–36.

    PubMed  Google Scholar 

  41. Bois F, Noirot C, Dietemann S, Mainta IC, Zilli T, Garibotto V, et al. 68Ga Ga-PSMA-11 in prostate cancer: a comprehensive review. Am J Nucl Med Mol Imaging. 2020;10:349–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Satapathy S, Sinh H, Kumar R, Mittal BR. Diagnostic accuracy of 68Ga-PSMA PET/CT for initial detection in patients with suspected prostate cancer: a systematic review and meta-analysis. AJR. 2021;216:599–607.

    PubMed  Google Scholar 

  43. Fendler WP, Schmidt DF, Wenter V, Thierfelder KM, Zach C, Stief C, et al. 68Ga-PSMA PET/ CT detects the location and extent of primary prostate cancer. J Nucl Med. 2016;57:1720–5.

    CAS  PubMed  Google Scholar 

  44. Uprimny C, Kroiss AS, Decristoforo C, Fritz J, von Guggenberg E, Kendler D, et al. 68Ga-PSMA-11 PET/CT in primary staging of prostate cancer: PSA and Gleason score predict the intensity of tracer accumulation in the primary tumour. Eur J Nucl Med Mol Imaging. 2017;44:941–9.

    CAS  PubMed  Google Scholar 

  45. Giesel FL, Sterzing F, Schlemmer HP, Holland-Letz T, Mier W, Rius M, et al. Intra-individual comparison of 68Ga-PSMA-11-PET/CT and multi-parametric MR for imaging of primary prostate cancer. Eur J Nucl Med Mol Imaging. 2016;43:1400–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Rhee H, Thomas P, Shepherd B, Gustafson S, Vela I, Russell PJ, et al. Prostate specific membrane antigen positron emission tomography may improve the diagnostic accuracy of multiparametric magnetic resonance imaging in localized prostate cancer. J Urol. 2016;196:1261–7.

    CAS  PubMed  Google Scholar 

  47. Grubmüller B, Baltzer P, Hartenbach S, D’Andrea D, Helbich TH, Haug AR, et al. PSMA ligand PET/MRI for primary prostate cancer: staging performance and clinical impact. Clin Cancer Res. 2018;24:6300–7.

    PubMed  Google Scholar 

  48. van Kalmthout LWM, van Melick HH, Lavalaye J, Meijer RP, Kooistra A, de Klerk JMH, et al. Prospective validation of Gallium-68 prostate specific membrane antigen-positron emission tomography/computerized tomography for primary staging of prostate cancer. J Urol. 2020;203:537.

    PubMed  Google Scholar 

  49. Maurer T, Gschwend JE, Rauscher I, Souvatzoglou M, Haller B, Weirich G, et al. Diagnostic efficacy of 68Gallium-PSMA positron emission tomography compared to conventional imaging for lymph node staging of 130 consecutive patients with intermediate to high risk prostate cancer. J Urol. 2016;195:1436–43.

    PubMed  Google Scholar 

  50. Wu H, Xu T, Wang X, Yu YB, Fan ZY, Li DX, et al. Diagnostic performance of (68)Gallium labelled prostate-specific membrane antigen positron emission tomography/computed tomography and magnetic resonance imaging for staging the prostate cancer with intermediate or high risk prior to radical prostatectomy: a systematic review and meta-analysis. World J Mens Health. 2020;38:208–19.

    PubMed  Google Scholar 

  51. Yaxley JW, Raveenthiran S, Nouhaud FX, Samaratunga H, Yaxley WJ, Coughlin G, et al. Risk of metastatic disease on (68) gallium-prostate-specific membrane antigen positron emission tomography/computed tomography scan for primary staging of 1253 men at the diagnosis of prostate cancer. BJU Int. 2019;124:401–7.

    CAS  PubMed  Google Scholar 

  52. Hofman MS, Lawrentschuk N, Francis RJ, Tang C, Vela I, Thomas P, et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet. 2020;395:1208–16.

    CAS  PubMed  Google Scholar 

  53. Roach PJ, Francis R, Emmett L, Hsiao E, Kneebone A, Hruby G, et al. The impact of (68)Ga-PSMA PET/CT on management intent in prostate cancer: results of an Australian prospective multicenter study. J Nucl Med. 2018;59:82–8.

    CAS  PubMed  Google Scholar 

  54. Hicks RJ, Murphy DG, Williams SG, et al. Seduction by sensitivity: reality, illusion, or delusion? The challenge of assessing outcomes after PSMA imaging selection of patients for treatment. J Nucl Med. 2017;58:1969–71.

    CAS  PubMed  Google Scholar 

  55. Cornford P, Grummet J, Fanti S. Prostate-specific membrane antigen positron emission tomography scans before curative treatment: ready for prime time? Eur Urol. 2020;78:e125–8.

    PubMed  Google Scholar 

  56. Fendler WP, Calais J, Eiber M, Flavell RR, Mishoe A, Feng FY, Nguyen HG, et al. Assessment of 68Ga-PSMA-11 PET accuracy in localizing recurrent prostate cancer: a prospective single-arm clinical trial. JAMA Oncol. 2019;5:856–63.

    PubMed  PubMed Central  Google Scholar 

  57. Perera M, Papa N, Christidis D, Wetherell D, Hofman MS, Murphy DG, et al. Sensitivity, specificity, and predictors of positive (68)Ga-prostate-specific membrane antigen positron emission tomography in advanced prostate cancer: a systematic review and meta-analysis. Eur Urol. 2016;70:926–37.

    PubMed  Google Scholar 

  58. von Eyben FE, Picchio M, von Eyben R, Rhee H, Bauman G. (68)Ga-labeled prostate-specific membrane antigen ligand positron emission tomography/computed tomography for prostate cancer: a systematic review and meta-analysis. Eur Urol Focus. 2018;4:686–93.

    Google Scholar 

  59. Jilg CA, Drendel V, Rischke HC, Beck T, Vach W, Schaal K, et al. Diagnostic accuracy of Ga-68-HBED-CC-PSMA-ligand-PET/CT before salvage lymph node dissection for recurrent prostate cancer. Theranostics. 2017;7:1770–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Calais J, Czernin J, Cao M, Kishan AU, Hegde JV, Shaverdian N, et al. (68)Ga-PSMA-11 PET/CT mapping of prostate cancer biochemical recurrence after radical prostatectomy in 270 patients with a PSA level of less than 1.0 ng/mL: impact on salvage radiotherapy planning. J Nucl Med. 2018;59:230–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Koerber SA, Will L, Kratochwil C, Haefner MF, Rathke H, Kremer C, et al. (68)Ga-PSMA-11 PET/CT in primary and recurrent prostate carcinoma: implications for radiotherapeutic management in 121 patients. J Nucl Med. 2018;60:234–40.

    PubMed  Google Scholar 

  62. Han S, Woo S, Kim YJ, Suh CH. Impact of (68)Ga-PSMA PET on the management of patients with prostate cancer: a systematic review and meta-analysis. Eur Urol. 2018;74:179–90.

    CAS  PubMed  Google Scholar 

  63. Çelen S, Gültekin A, Özlülerden Y, Mete A, Sağtaş E, Ufuk F, et al. Comparison of 68Ga-PSMA-I/T PET-CT and multiparametric MRI for locoregional staging of prostate cancer patients: a pilot study. Urol Int. 2020;104:684–91.

    PubMed  Google Scholar 

  64. Muehlematter UJ, Burger IA, Becker AS, Schawkat K, Hötker AM, Reiner CSS, et al. Reiner diagnostic accuracy of multiparametric MRI versus 68 Ga-PSMA-11 PET/MRI for extracapsular extension and seminal vesicle invasion in patients with prostate cancer. Radiology. 2019;293:350–8.

    PubMed  Google Scholar 

  65. Zhou J, Gou Z, Wu R, Yuan Y, Yu G, Zhao Y. Comparison of PSMA-PET/CT, choline-PET/CT, NaF-PET/CT, MRI, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a systematic review and meta-analysis. Skelet Radiol. 2019;48:1915–24.

    Google Scholar 

  66. Schwenck J, Rempp H, Reischl G, Kruck S, Stenzl A, Nikolaou K, et al. Comparison of 68 Ga-labelled PSMA-11 and 11 C-choline in the detection of prostate cancer metastases by PET/CT. Eur J Nucl Med Mol Imaging. 2017;44:92–101.

    CAS  PubMed  Google Scholar 

  67. Lin CY, Lee MT, Lin CL, Kao CH. Comparing the staging/restaging performance of 68Ga-labeled prostate-specific membrane antigen and 18F-choline PET/CT in prostate cancer: a systematic review and meta-analysis. Clin Nucl Med. 2019;44:365–76.

    PubMed  Google Scholar 

  68. Calais J, Ceci F, Eiber M, Hope TA, Hofman MS, Rischpler C, et al. (18)F-fluciclovine PET-CT and (68)Ga-PSMA-11 PET-CT in patients with early biochemical recurrence after prostatectomy: a prospective, single-centre, single-arm, comparative imaging trial. Lancet Oncol. 2019;20:1286–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Pernthaler B, Kulnik R, Gstettner C, Salamon S, Aigner RM, Kvaternik H. A prospective head-to-head comparison of 18f-fluciclovine with 68Ga-PSMA-11 in biochemical recurrence of prostate cancer in PET/CT. Clin Nucl Med. 2019;44:e566–73.

    PubMed  Google Scholar 

  70. Sanchez-Crespo A. Comparison of Gallium-68 and Fluorine-18 imaging characteristics in positron emission tomography. Appl Radiat Isot. 2013;76:55–62.

    CAS  PubMed  Google Scholar 

  71. Parikh NR, Tsai S, Bennett C, Lewis M, Sadeghi A, Lorentz W, et al. The impact of 18F-DCFPyL PET-CT imaging on initial staging, radiation, and systemic therapy treatment recommendations for veterans with aggressive prostate cancer. Adv Radiat Oncol. 2020;5:1364–9.

    PubMed  PubMed Central  Google Scholar 

  72. Mena E, Lindenberg ML, Turkbey IB, Shih JH, Harmon SA, Lim I, et al. 18 F-DCFPyL PET/CT imaging in patients with biochemically recurrent prostate cancer after primary local therapy. J Nucl Med. 2020;61:881–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Pan KH, Wang JH, Wang CY, Nikzad AA, Kong FQ, Jian L, et al. Evaluation of 18F-DCFPyL PSMA PET/CT for prostate cancer: a meta-analysis. Front Oncol. 2020;10:597422.

    PubMed  Google Scholar 

  74. Dietlein M, Kobe C, Kuhnert G, Stockter S, Fischer T, Schomacker K, et al. Comparison of ((18)F)DCFPyL and ((68)Ga)Ga-PSMA-HBED-CC for PSMA-PET imaging in patients with relapsed prostate cancer. Mol Imaging Biol. 2015;17:575–84.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orvieto, M.A., Kumar, A., Yadav, S., Arca, H.O., Rodrigo Pinochet, F., Souper, R. (2022). Current Imaging Modalities to Assess Prostate Cancer. In: Wiklund, P., Mottrie, A., Gundeti, M.S., Patel, V. (eds) Robotic Urologic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-00363-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-00363-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-00362-2

  • Online ISBN: 978-3-031-00363-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics