Skip to main content

History and Diversity: Establishing a Context for Helminth Biology

  • Chapter
  • First Online:
Helminth Infections and their Impact on Global Public Health

Abstract

Over the years, we have come to recognize that evolution is a dynamic process and a fundamental organizing principle for exploring diversity and the biosphere. Basic knowledge of systematics and phylogenetics within an evolutionary context is essential for gaining a flexible understanding of contemporary parasite diversity and developmental pathways and assessing how these are influenced by environmental perturbation and anthropogenic forcing. Further, an appreciation for historical processes as determinants of modern-day geographic patterns and host associations is needed to explore the outcomes of environmental change on parasite evolution and parasite faunal structure. Collectively, these data lead to a better predictive capacity for future changes in the distribution patterns and roles that parasites play in animal and human health. We provide a powerful alternative to a century of coevolutionary thinking that has dominated parasitology, in a succinct outline of the recently proposed Stockholm Paradigm which explores diversity, evolution, and biogeography of complex parasite-host assemblages. In this chapter, we highlight how insights from the past and knowledge of current parasite assemblages expose the impacts that accelerated climate warming, habitat perturbation, erosion of biodiversity, and changes in host adaptation have had on the ebb and flow of zoonotic infectious diseases. We further look at how molecular and biochemical studies have advanced systematics, taxonomic stability, and diagnostic capability and are guiding future progress toward understanding parasites, parasitism, and their relationships to global public health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agosta SJ, Brooks DR (2020) The major metaphors of evolution: Darwinism then and now. Springer International Publishing. https://doi.org/10.1007/978-3-030-52086-1

    Book  Google Scholar 

  • Agosta SJ, Klemens SA (2008) Ecological fitting by phenotypically flexible genotypes: implications for species associations, community assembly and evolution. Ecol Lett 11:1123–1134

    Article  PubMed  Google Scholar 

  • Agosta S, Janz N, Brooks DR (2010) How generalists can be specialists: resolving the “parasite paradox” and implications for emerging disease. Fortschr Zool 27:151–162

    Google Scholar 

  • Aguinaldo AMA, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493

    Article  CAS  PubMed  Google Scholar 

  • Araujo SBL, Braga MP, Brooks DR, Agosta S, Hoberg EP, von Hathental F, Boeger WA (2015) Understanding host-switching by ecological fitting. PLoS One 10(10):e0139225. https://doi.org/10.1371/journal.pone.0139225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashford RW, Crewe W (2003) The parasites of Homo sapiens: an annotated checklist of the protozoa, helminths and arthropods for which we are home, 2nd edn. Taylor and Francis, New York

    Book  Google Scholar 

  • Attwood SW, Fatih FA, Mondal MM, Alim MA, Fadjar S, Rajapakse RP, Rollinson D (2007) A DNA sequence-based study of the Schistosoma indicum (Trematoda: Digenea) group: population phylogeny, taxonomy and historical biogeography. Parasitology 134:2009–2020

    Article  CAS  PubMed  Google Scholar 

  • Audy JR (1958) The localization of disease with special reference to zoonoses. Trans R Soc Trop Med Hygiene 52:309–328

    Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Barnosky AD, Hadly EA, Bascompte J et al (2012) Approaching a state shift in Earth’s biosphere. Nature 486:52–58

    Article  CAS  PubMed  Google Scholar 

  • Bell KC, Calhoun K, Hoberg EP, Demboski JR, Cook JA (2016) Temporal and spatial mosaics: deep host association and shallow geographic drivers shape genetic structure in a widespread pinworm, Rauschtineria eutamii (Nematoda: Oxyuridae). Biol J Linn Soc 119:397–413

    Article  Google Scholar 

  • Betson M, Halstead FD, Nejsum P, Imison E, Khamis IS, Sousa-Figueiredo JC, Rollinson D, Stothard JR (2011) A molecular epidemiological investigation of Ascaris on Unguja, Zanzibar using isoenyzme analysis, DNA barcoding and microsatellite DNA profiling. Trans R Soc Trop Med Hyg 105:370–379

    Article  CAS  PubMed  Google Scholar 

  • Blanton RE, Blank WA, Costa JM, Carmo TM, Reis EA, Silva LK, Barbosa LM, Test MR, Reis MG (2011) Schistosoma mansoni population structure and persistence after praziquantel treatment in two villages of Bahia, Brazil. Int J Parasit 41:1093–1099

    Article  Google Scholar 

  • Blaxter ML, De Ley P, Garey JR et al (1998) A molecular evolutionary framework for the phylum Nematoda. Nature 392:71–75

    Article  CAS  PubMed  Google Scholar 

  • Blaxter M, Kumar S, Kaur G, Koutsovoulos G, Elsworth B (2012) Genomics and transcriptomics across the diversity of the Nematoda. Parasite Immunol 34:108–120

    Article  CAS  PubMed  Google Scholar 

  • Boeger WA, Brooks DR, Trivellone V, Agosta S, Hoberg EP (2022) Ecological super-spreaders drive host-range oscillations: omicron and risk-space for emerging infectious disease. Transbound Emerg Dis. https://doi.org/10.1111/tbed.14557. Online ahead of print

  • Bray RA, Cribb TH, Littlewood DTJ, Waeschenbach A (2016) The molecular phylogeny of the digenean family Opecoelidae Ozaki, 1925 and the value of morphological characters, with the erection of a new subfamily. Folia Parasitol 63:013. https://doi.org/10.14411/fp.2016.013

    Article  Google Scholar 

  • Brooks DR, Ferrao A (2005) The historical biogeography of coevolution: emerging infectious diseases are evolutionary accidents waiting to happen. J Biogeogr 32:1291–1299

    Article  Google Scholar 

  • Brooks DR, Hoberg EP (2007) How will global climate change affect parasite-host assemblages? Trends Parasitol 23:571–574

    Article  PubMed  Google Scholar 

  • Brooks DR, Hoberg EP (2013) The emerging infectious disease crisis and pathogen pollution: a question of ecology and evolution. In: Rohde K (ed) The balance of nature and human impact. Cambridge University Press, Cambridge, pp 215–229

    Chapter  Google Scholar 

  • Brooks DR, McLennan DA (1993) Parascript: parasites and the language of evolution. Smithsonian Institution Press, Washington DC

    Google Scholar 

  • Brooks DR, McLennan DA (2002) The nature of diversity: an evolutionary voyage of discovery. University of Chicago Press, Chicago, IL

    Book  Google Scholar 

  • Brooks DR, Hoberg EP, Gardner SL, Boeger W, Galbreath KE, Herczeg D, Mejía-Madrid HH, Racz E, Tsogtsaikhan Dursahinhan A (2014) Finding them before they find us: informatics, parasites and environments in accelerating climate change. Comp Parasitol 81:155–164

    Article  Google Scholar 

  • Brooks DR, Hoberg EP, Boeger WA (2015) In the eye of the cyclops- re-examining the classic case of cospeciation: why paradigms are important. Comp Parasitol 82:1–8

    Article  Google Scholar 

  • Brooks DR, Hoberg EP, Boeger WA (2019) The Stockholm paradigm: climate change and emerging disease. University of Chicago Press, Chicago, IL, p 423

    Google Scholar 

  • Brooks DR, Hoberg EP, Boeger WA et al (2020) Before the pandemic ends: making sure this never happens again. WCSAJ 1:7–15

    Article  Google Scholar 

  • Brooks DR, Hoberg EP, Boeger WA, Trivellone V (2022) Emerging infectious disease: an underappreciated area of strategic concern for food security. Transbound Emerg Dis 69:254–267. https://doi.org/10.1111/tbed.14009

    Article  PubMed  Google Scholar 

  • Caffrey CR, Rohwer A, Oellien F, Marhöfer RJ, Braschi S, Oliveira G, McKerrow JH, Selzer PM (2009) A comparative chemogenomics strategy to predict potential drug targets in the metazoan pathogen, Schistosoma mansoni. PLoS One 4:e4413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caira JN, Jensen K (eds) (2017) In: Planetary biodiversity inventory (PBI): tapeworms from vertebrate bowels of the earth (2008–2017), vol 25. Special Publication. Natural History Museum, The University of Kansas, Lawrence, KS, p 463p

    Google Scholar 

  • Carlson CJ, Dallas TA, Alexander LW, Phelan AL, Phillips AJ (2020) What would it take to describe the global diversity of parasites? Proc R Soc B 287:20201841. https://doi.org/10.1098/rspb.2020.1841

    Article  PubMed  PubMed Central  Google Scholar 

  • Castagnone-Sereno P, Danchin EGJ, Deleury E, Guillemaud T, Malausa T, Abad P (2010) Genome-wide survey and analysis of microsatellites in nematodes, with a focus on the plant-parasitic species Meloidogyne incognita. BMC Genomics 11:598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chevalier FD, Valentim CL, LoVerde PT, Anderson TJ (2014) Efficient linkage mapping using exome capture and extreme QTL in schistosome parasites. BMC Genomics 15:617. https://doi.org/10.1186/1471-2164-15-617

    Article  PubMed  PubMed Central  Google Scholar 

  • Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287. https://doi.org/10.1126/science.1123061

    Article  CAS  PubMed  Google Scholar 

  • Cleaveland S, Laurenson MK, Taylor LH (2001) Diseases of humans and their domestic mammals: pathogen characteristics, host range and the risk of emergence. Phil Trans R Soc Lond B Biol Sci 356:991–999

    Article  CAS  Google Scholar 

  • Coghlan A, Tyagi R, Cotton JA et al (2019) Comparative genomics of the major parasitic worms. Nat Genet 51:163–174. https://doi.org/10.1038/s41588-018-0262-1

    Article  CAS  Google Scholar 

  • Colella JP, Bates J, Burneo S, Camacho A, Carrion C, Constable I, D’Elia G, Dunnum J, Grieman S, Hoberg E, Lessa E, Liphardt S, Londono M, Losos E, Lutz H, Ordóñez Garcia N, Peterson T, Martin ML, Ribas C, Strumminger B, Thompson C, Weksler M, Cook J (2021) Leveraging natural history collections as a global, decentralized pathogen surveillance network. PLoS Pathog 17(6):e1009583. https://doi.org/10.1371/journal.ppat.1009583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coles GC (1970) A comparison of some isoenyzmes of Schistosoma mansoni and Schistosoma haematobium. Comp Biochem Physiol 33:549–558

    Article  CAS  PubMed  Google Scholar 

  • Cook JA, Brochman C, Talbot SL, Fedorov VB, Taylor EB, Väinölä R, Hoberg EP, Kholodova M, Magnussun KP, Mustonen T (2013) Genetics. In: Meltofte H (ed) Arctic biodiversity assessment. Arctic Council, Convention for Arctic Flora and Fauna, Kiruna, pp 515–539

    Google Scholar 

  • Cook JA, Galbreath KE, Bell KC et al (2017) The Beringian coevolution project: holistic collections of mammals and associated parasites reveal novel perspectives on changing environments in the north. Arct Sci 3:585–617

    Article  Google Scholar 

  • Cook JA, Arai S, Armién B et al (2020) Integrating biodiversity infrastructure into pathogen discovery and mitigation of emerging infectious diseases. Bioscience 70:531–534

    Article  PubMed  PubMed Central  Google Scholar 

  • Copley RR, Aloy P, Russell RB, Telford MJ (2004) Systematic searches for molecular synapomorphies in model metazoan genomes give some support for Ecdysozoa after accounting for the idiosyncrasies of Caenorhabditis elegans. Evol Dev 6:164–169

    Article  CAS  PubMed  Google Scholar 

  • Criscione CD, Poulin R, Blouin MS (2005) Molecular ecology of parasites: elucidating ecological and microevolutionary processes. Mol Ecol 14:2247–2257

    Article  CAS  PubMed  Google Scholar 

  • Criscione CD, Anderson JD, Sudimack D, Peng W, Jha B, Williams-Blangero S, Anderson TJC (2007) Disentangling hybridization and host colonization in parasitic roundworms of humans and pigs. Proc R Soc B-Biol Sci 274:2669–2677

    Article  CAS  Google Scholar 

  • Criscione CD, Valentim CLL, Hirai H, LoVerde PT, Anderson TJC (2009) Genomic linkage map of the human blood fluke Schistosoma mansoni. Genome Biol 10:R71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dagan T, Martin W (2006) The tree of one percent. Genome Biol 7:118. https://doi.org/10.1186/gb-2006-7-10-118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daszak P, Cunningham AA, Hyatt AD (2000) Emerging infectious diseases of wildlife: threats to biodiversity and human health. Science 287:443–449

    Article  CAS  PubMed  Google Scholar 

  • Davies K, Pagan C, Nadler SA (2020) Host population expansion and the genetic architecture of the pinniped hookworm Uncinaria lucasi. J Parasitol 106:383–391

    Article  PubMed  Google Scholar 

  • Davis GM (1993) Evolution of prosobranch snails transmitting Asian Schistosoma; coevolution with Schistosoma: a review. Prog Clin Parasitol 3:145–204

    Article  CAS  PubMed  Google Scholar 

  • De Ley P, Blaxter ML (2002) Systematic position and phylogeny. In: Lee DL (ed) The biology of nematodes. Taylor and Francis, London, pp 1–30

    Chapter  Google Scholar 

  • De Ley P, Blaxter ML (2004) A new system for Nematoda: combining morphological characters with molecular trees and translating clades into ranks and taxa. In: Cook R, Hunt DJ (eds) Nematology monographs and perspectives, vol 2. EJ Brill, Leiden, pp 633–653

    Google Scholar 

  • de Menocal PB, Stringer C (2016) Human migration: climate and the peopling of the world. Nature 538:49–50

    Article  CAS  Google Scholar 

  • Dean FB, Hosono S, Fang LH et al (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci U S A 99:5261–5266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delsuc F, Brinkmann H, Philippe H (2005) Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 6:361–375

    Article  CAS  PubMed  Google Scholar 

  • Deplazes P, Eichenberger RM, Grimm F (2019) Wildlife-transmitted Taenia and Versteria cysticercosis and coenurosis in humans and other primates. IJP: Parasite Wildl 9:342–358

    Google Scholar 

  • Detwiler JT, Criscione CD (2010) An infectious topic in reticulate evolution: Introgression and hybridization in animal parasites. Genes 1:102–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devi KR, Narain K, Mahanta J, Nirmolia T, Blair D, Saikia SP, Agatsuma T (2013) Presence of three distinct genotypes within the Paragonimus westermani complex in northeastern India. Parasitology 140:76–86

    Article  Google Scholar 

  • Dobson A, Lafferty KD, Kuris AM, Hechinge RF, Jetz W (2008) Homage to Linnaeus: how many parasites? How many hosts? Proc Natl Acad Sci 105:11482–11489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dopazo H, Dopazo J (2005) Genome-scale evidence of the nematode-arthropod clade. Genome Biol 6:R41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dopazo H, Santoyo J, Dopazo J (2004) Phylogenomics and the number of characters required for obtaining an accurate phylogeny of eukaryote model species. Bioinformatics 20(Suppl. 1):I116–I121

    Article  CAS  PubMed  Google Scholar 

  • Doyle SR, Cotton JA (2019) Genome-wide approaches to investigate anthelmintic resistance. Trends Parasitol 35:289–301

    Article  CAS  PubMed  Google Scholar 

  • Doyle SR, Sankaranarayanan G, Allan F, Berger D, Castro PDJ, Collins JB, Crellen T, Duque-Correa MA, Ellis P, Jaleta TG, Laing R, Maitland K, McCarthy C, Moundai T, Softley B, Thiele E, Ouakou PT, Tushabe JV, Webster JP, Weiss AJ, Lok J, Devaney E, Kaplan RM, Cotton JA, Berriman M, Holroyd N (2019) Evaluation of DNA extraction methods on individual helminth egg and larval stages for whole-genome sequencing. Front Genet 10:826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunams-Morel DB, Reichard MV, Torretti L, Zarlenga DS, Rosenthal BM (2012) Discernible but limited introgression has occurred where Trichinella nativa and the T6 genotype occur in sympatry. Infect Genet Evol 12:530–538

    Article  CAS  PubMed  Google Scholar 

  • Dunnum JL, Yanagihara R, Johnson KM, Armien B, Batsaikhan N, Morgan L, Cook JA (2017) Biospecimen repositories and integrated databases as critical infrastructure for pathogen discovery and pathobiology research. PLoS Negl Trop Dis 11:e0005133. https://doi.org/10.1371/journal.pntd.0005133

    Article  PubMed  PubMed Central  Google Scholar 

  • Edwards SV (2009) Is a new and general theory of molecular systematics emerging? Evolution 63:1–19

    Article  CAS  PubMed  Google Scholar 

  • Eisen JA (1998) Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. Genome Res 8:163–167

    Article  CAS  PubMed  Google Scholar 

  • Eisen JA, Fraser CM (2003) Phylogenomics: intersection of evolution and genomics. Science 300:1706–1707

    Article  CAS  PubMed  Google Scholar 

  • Erwin TL (1985) The taxon pulse: a general pattern of lineage radiation and extinction among carabid beetles. In: Ball GE (ed) Taxonomy, phylogeny, and zoogeography of beetles and ants. Dr. W. Junk, Dordrecht, pp 437–472

    Google Scholar 

  • Excoffier L, Heckel G (2006) Computer programs for population genetics data analysis: a survival guide. Nat Rev Genet 7:745–758

    Article  CAS  PubMed  Google Scholar 

  • Flockhart HA, Harrison SE, Dobinson AR, James ER (1982) Enzyme polymorphism in Trichinella. Trans R Soc Trop Med Hyg 76:541–545

    Article  CAS  PubMed  Google Scholar 

  • Folinsbee KE, Brooks DR (2007) Early hominid biogeography: pulses of dispersal and differentiation. J Biogeogr 43:383–397

    Article  Google Scholar 

  • Foxman B, Riley L (2001) Molecular epidemiology: focus on infection. Am J Epidemiol 153:1135–1141

    Article  CAS  PubMed  Google Scholar 

  • Galbreath KE, Hoberg EP (2015) Host responses to historical climate change shape parasite communities in North America’s intermountain west. Folia Zool Brno 64:218–232

    Article  Google Scholar 

  • Ghiselin MT (1974) A radical solution to the species problem. Syst Zool 23:536–544

    Article  Google Scholar 

  • Gorton MJ, Kasl EL, Detwiler JT, Criscione CD (2012) Testing local-scale panmixia provides insights into the cryptic ecology, evolution, and epidemiology of metazoan animal parasites. Parasitology 139:981–997

    Article  PubMed  Google Scholar 

  • Groucutt HS, Grün R, Zalmout ISA et al (2018) Homo sapiens in Arabia by 85,000 years ago. Nat Ecol Evol 2:800–809

    Article  PubMed  PubMed Central  Google Scholar 

  • Guth S, Visher E, Boots M, Brook CE (2019) Host phylogenetic distance drives trends in virus virulence and transmissibility across the animal–human interface. Phil Trans R Soc Lond B 374:20190296. https://doi.org/10.1098/rstb.2019.0296

    Article  Google Scholar 

  • Haas GMS, Hoberg EP, Cook JA, Haukisalmi V, Makarikov AA, Gallagher SR, Dokuchaev NE, Galbreath KE (2020) Taxon pulse dynamics, episodic dispersal and host colonization across Beringia drive diversification of a Holarctic tapeworm assemblage. J Biogeogr 00:1–15. https://doi.org/10.1111/jbi.13949

    Article  Google Scholar 

  • Harcourt AH (2012) Human biogeography. University of California Press, Berkeley, CA

    Book  Google Scholar 

  • Haukisalmi V, Hardman LM, Hoberg EP, Henttonen H (2014) Phylogenetic relationships and taxonomic revision of Paranoplocephala Lühe, 1910 sensu lato (Cestoda, Cyclophyllidea, Anoplocephalidae). Zootaxa 3873:371–415

    Article  PubMed  Google Scholar 

  • Haukisalmi V, Hardman LM, Fedorov V, Hoberg EP, Henttonen H (2016) Molecular systematics and phylogeography of cestodes of the genus Anoplocephaloides Baer, 1923 s.s. (Cyclophyllidea: Anoplocephalidae) in lemmings (Lemmus, Synaptomys). Zool Scr 45:88–102

    Article  Google Scholar 

  • Hawdon JM, Johnston SA (1996) Hookworms in the Americas: an alternative to trans-Pacific contact. Parasitol Today 12:72–74

    Article  CAS  PubMed  Google Scholar 

  • Hedtke SM, Kuesel AC, Crawford KE, Graves PM, Boussinesq M, Lau CL, Boakye DA, Grant WN (2020) Genomic epidemiology in filarial nematodes: transforming the basis for elimination program decision. Front Genet 10:1282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heizer E, Zarlenga DS, Rosa B, Gao X, Gasser RB, De Graef J, Geldhof P, Mitreva M (2013) Transcriptome analyses reveal protein and domain families that delineate stage-related development in the economically important parasitic nematodes, Ostertagia ostertagi and Cooperia oncophora. BMC Genomics 14:118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoberg EP (1997) Phylogeny and historical reconstruction: host parasite systems as keystones in biogeography and ecology. In: Reaka-Kudla M, Wilson EO, Wilson D (eds) Biodiversity II: understanding and protecting our resources. Joseph Henry Press, National Academy of Sciences, Washington, DC, pp 243–261

    Google Scholar 

  • Hoberg EP (2006) Phylogeny of Taenia: defining species and origins of human parasites. Parasitol Int 50:S23–S30

    Article  Google Scholar 

  • Hoberg EP (2010) Invasive processes, mosaics and the structure of helminth parasite faunas. Rev Sci Tech 29:255–272

    Article  CAS  PubMed  Google Scholar 

  • Hoberg EP, Brooks DR (2008) A macroevolutionary mosaic: episodic host-switching, geographic colonization, and diversification in complex host-parasite systems. J Biogeogr 35:1533–1550

    Article  Google Scholar 

  • Hoberg EP, Brooks DR (2010) Beyond vicariance: integrating taxon pulses, ecological fitting and oscillation in historical biogeography and evolution. In: Morand S, Krasnov B (eds) The geography of host-parasite interactions. Oxford University Press, Oxford, pp 7–20

    Google Scholar 

  • Hoberg EP, Brooks DR (2013) Episodic processes, invasion, and faunal mosaics in evolutionary and ecological time. In: Rohde K (ed) The balance of nature and human impact. Cambridge University Press, Cambridge, pp 199–213

    Chapter  Google Scholar 

  • Hoberg EP, Brooks DR (2015) Evolution in action: climate change, biodiversity dynamics and emerging infectious disease. Phil Trans R Soc Lond B 370(20130553):10.1098/rstb.2013.0553

    Google Scholar 

  • Hoberg EP, Zarlenga DS (2016) Evolution and biogeography of Haemonchus contortus, linking faunal dynamics in space and time. In: Gasser RB, von Samson-Himmelstjerna G (eds.) Haemonchus contortus and Haemonchosis: past, present and future trends. Adv Parasitol 93:1–30

    Article  CAS  PubMed  Google Scholar 

  • Hoberg EP, Alkire NL, de Queiroz A, Jones A (2001) Out of Africa: origins of the Taenia tapeworms in humans. Proc R Soc Lond B Biol Sci 268:781–787

    Article  CAS  Google Scholar 

  • Hoberg EP, Galbreath KE, Cook JA, Kutz SJ, Polley L (2012) Northern host-parasite assemblages: history and biogeography on the borderlands of episodic climate and environmental transition. Adv Parasitol 79:1–97

    Article  PubMed  Google Scholar 

  • Hoberg EP, Agosta SJ, Boeger WA, Brooks DR (2015) An integrated parasitology: revealing the elephant through tradition and invention. Trends Parasitol 31:128–133

    Article  PubMed  Google Scholar 

  • Hoberg EP, Boeger WA, Brooks DR, Trivellone V, Agosta S (2022) Steppingstones and mediators of pandemic expansion – a context for humans as ecological super-spreaders. Manter: J Parasite Biodiversity. (in press)

    Google Scholar 

  • Holterman M, van der Wurff A, van den Elsen S, van Megen H, Bongers T, Holovachov O, Bakker J, Helder J (2006) Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown Clades. Mol Biol Evol 23:1792–1800

    Article  CAS  PubMed  Google Scholar 

  • Holton TA, Pisani D (2010) Deep genomic-scale analyses of the Metazoa reject coelomata: evidence from single- and multigene families analyzed under a supertree and supermatrix paradigm. Genome Biol Evol 2:310–324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hull D (1988) Science as a process. University of Chicago Press, Chicago, IL, p 586

    Book  Google Scholar 

  • Huyse T, Poulin R, Théron A (2005) Speciation in parasites: a population genetics approach. Trends Parasitol 21:469–475

    Article  PubMed  Google Scholar 

  • Ito A, Nakao M, Lavikainen A, Hoberg EP (2017) Cystic echinococcosis: future perspectives of molecular epidemiology. Acta Trop 165:3–9

    Article  CAS  PubMed  Google Scholar 

  • Janz N, Nylin S (2008) The oscillation hypothesis of host-plant range and speciation. In: Tilmon KJ (ed) Specialization, speciation, and radiation: the evolutionary biology of herbivorous insects. University of California Press, Berkeley, CA, pp 203–215

    Google Scholar 

  • Janzen DH (1985) On ecological fitting. Oikos 45:308–310

    Article  Google Scholar 

  • Jeffroy O, Brinkmann H, Delsuc F, Philippe H (2006) Phylogenomics: the beginning of incongruence? Trends Genet 22:225–231

    Article  CAS  PubMed  Google Scholar 

  • Jenkins E, Castrodale L, de Rosemond S, Dixon B, Elmore S, Gesy K, Hoberg E, Polley L, Schurer J, Simard M, Thompson RCA (2013) Tradition and transition: parasitic zoonoses of people and animals in Alaska, northern Canada and Greenland. Adv Parasitol 82:33–204

    Article  PubMed  Google Scholar 

  • Jex AR, Liu S, Li B et al (2011) Ascaris suum draft genome. Nature 479:529–533

    Article  CAS  PubMed  Google Scholar 

  • Jones KE, Patel NG, Levy MA, Storeygard A, Bal D, Gittleman JL, Daszak P (2008) Global trends in emerging infectious diseases. Nature 451:990–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamvar ZN, López-Uribe MM, Coughlan S, Grünwald NJ, Lapp H, Manel S (2017) Developing educational resources for population genetics in R: an open and collaborative approach. Mol Ecol Res 17:120–128

    Article  Google Scholar 

  • Keiser J, Utzinger J (2010) The drugs we have and the drugs we need against major helminth infections. Adv Parasitol 73:197–230

    Article  PubMed  Google Scholar 

  • Korbel JO, Snel B, Huynen MA, Bork P (2002) SHOT: a web server for the construction of genome phylogenies. Trends Genet 18:158–162

    Article  CAS  PubMed  Google Scholar 

  • Korhonen PK, Pozio E, La Rosa G et al (2016) Phylogenomic and biogeographic reconstruction of the Trichinella complex. Nat Commun 7:10513. https://doi.org/10.1038/ncomms10513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuris AM (2012) The global burden of human parasites: who and where are they? How are they transmitted? J Parasitol 98:1056–1064

    Article  PubMed  Google Scholar 

  • Kuris AM, Hechinger RF, Shaw JC et al (2008) Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454:515–518

    Article  CAS  PubMed  Google Scholar 

  • La Rosa G, Marucci G, Zarlenga DS, Casulli A, Zarnke RL, Pozio E (2003) Molecular identification of natural hybrids between Trichinella nativa and Trichinella T6 provides evidence of gene flow and ongoing genetic divergence. Int J Parasitol 33:209–216

    Article  PubMed  Google Scholar 

  • Lafferty KD, Allesina S, Arim M et al (2008) Parasites in foodwebs: the ultimate missing links. Ecol Lett 11:533–546

    Article  PubMed  PubMed Central  Google Scholar 

  • Lavikainen A, Haukisalmi V, Lehtinen MJ, Laaksonen Henttonen H, Oksanen A, Meri S (2008) A phylogeny of members of the family Taeniidae based on mitochondrial cox1 and nad1 gene data. Parasitology 135:1457–1467

    Article  CAS  PubMed  Google Scholar 

  • Lavikainen A, Iwaki T, Haukisalmi V et al (2016) Reappraisal of Hydatigera taeniaeformis (Batsch, 1786) (Cestoda: Taeniidae) sensu lato with description of Hydatigera kamiyai n. sp. Int J Parasitol 46:361–374

    Article  PubMed  Google Scholar 

  • Lawton SP, Hirai H, Ironside JE, Johnston DA, Rollinson D (2011) Genomes and geography: genomic insights into the evolution and phylogeography of the genus Schistosoma. Parasit Vectors 4:131

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee LM, Wallace RS, Clyde VL et al (2016) Definitive hosts of a fatal Versteria species (Cestoda: Taeniidae) in North America. Emerg Infect Dis 22:707–710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Longhorn SJ, Foster PG, Vogler AP (2007) The nematode–arthropod clade revisited: phylogenomic analyses from ribosomal protein genes misled by shared evolutionary biases. Cladistics 23:130–144

    Article  PubMed  Google Scholar 

  • Louca S, Pennell MW (2020) Extant timetrees are consistent with a myriad of diversification histories. Nature 580:502–505

    Article  CAS  PubMed  Google Scholar 

  • Lu MR, Lai C-K, Liao B-Y, Tsai IJ (2020) Comparative transcriptomics across nematode life cycles reveal gene expression conservation and correlated evolution in adjacent developmental stages. Genome Biol Evol 12:1019–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lustigman S, Geldhof P, Grant WN, Osei-Atweneboana MY, Sripa B, Basanez MG (2012) A research agenda for helminth diseases of humans: basic research and enabling technologies to support control and elimination of helminthiases. Plos Neglect Trop Dis 6:e1582

    Article  Google Scholar 

  • Marty AM, Andersen EM (2000) Fasciolopsiasis and other intestinal trematodiases. In: Meyers WM, Neafie RC, Marty AM, Wear DJ (eds) Pathology of infectious diseases, helminthiases, vol 1. Armed Forces Institute of Pathology, Washington, DC, pp 93–105

    Google Scholar 

  • Mattiucci S, Nascetti G (2008) Advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host-parasite co-evolutionary processes. Adv Parasitol 66:47–148

    Article  PubMed  Google Scholar 

  • McBurney Lin S, Khorram D, Gee S, Hoberg EP, Klassen Fischer MK, Neafie RC (2018) A new worm infiltrating the human cornea: a report of 3 cases. Am J Ophthalmol Case Rep 9:124–130. https://doi.org/10.1016/j.ajoc.2018.01.013

    Article  PubMed  PubMed Central  Google Scholar 

  • McManus DP (2006) Molecular discrimination of taeniid cestodes. Parasitol Int 55:S31–S37

    Article  CAS  PubMed  Google Scholar 

  • McMichael AJ, Woodward A, Muir C (2017) Climate change and the health of nations: famines, fevers, and the fate of populations. Oxford University Press, New York, p 370

    Book  Google Scholar 

  • McNulty SN, Weil GJ, Heinz M, Crosby SD, Fischer PU (2008) Brugia malayi: whole genome amplification for genomic characterization of filarial parasites. Exp Parasitol 119:256–263

    Article  CAS  PubMed  Google Scholar 

  • McNulty SN, Mitreva M, Weil GJ, Fischer PU (2013) Inter and intra-specific diversity of parasites that cause lymphatic filariasis. Infect Genet Evol 14:137–146

    Article  PubMed  Google Scholar 

  • Meldal BH, Debenham NJ, De Ley P, De Ley IT, Vanfleteren JR, Vierstraete AR, Bert W, Borgonie G, Moens T, Tyler PA, Austen MC, Blaxter ML, Rogers AD, Lambshead PJ (2007) An improved molecular phylogeny of the Nematoda with special emphasis on marine taxa. Mol Phylogenet Evol 42:622–636

    Article  CAS  PubMed  Google Scholar 

  • Mitreva M, Jasmer DP, Zarlenga DS et al (2011) The draft genome of the parasitic nematode Trichinella spiralis. Nat Genet 43:228–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mollentze N, Streicker DG (2020) Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. Proc Natl Acad Sci 117:9423–9430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morens DM, Fauci AS (2020) Emerging pandemic diseases: how we got to COVID-19. Cell 182:1077–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morlon H, Parsons TL, Plotkin JB (2011) Reconciling molecular phylogenies with the fossil record. Proc Natl Acad Sci 108:16327–16332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray CJ, Lopez AD (eds) (1996) The global burden of disease, A comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2020. Harvard School of Public Health, World Bank, World Health Organization, Geneva

    Google Scholar 

  • Nadler SA (2002) Species delimitation and nematode biodiversity: phylogenies rule. Nematology 4:615–625

    Article  Google Scholar 

  • Nadler SA, Hudspeth DSS (2000) Phylogeny of the ascaridoidea (Nematoda: Ascaridida) based on three genes and morphology: hypotheses of structural and sequence evolution. J Parasitol 86:380–393

    Article  CAS  PubMed  Google Scholar 

  • Nadler SA, Pérez-Ponce de León P (2011) Integrating molecular and morphological approaches for characterizing parasite cryptic species: implications for parasitology. Parasitology 138:1688–1709

    Article  CAS  PubMed  Google Scholar 

  • Nakao M, McManus P, Schantz PM, Craig PS, Ito A (2007) A molecular phylogeny of the genus Echinococcus inferred from complete mitochondrial genomes. Parasitology 134:713–722

    Article  CAS  PubMed  Google Scholar 

  • Nakao M, Xiao N, Okomoto M, Yanagida T, Sako Y, Ito A (2009) Geographic pattern of genetic variation in the fox tapeworm Echinococcus multilocularis. Parasitol Int 58:384–389

    Article  CAS  PubMed  Google Scholar 

  • Nakao M, Lavikainen A, Iwaki T, Haukisalmi V, Konyaev S, Oku Y, Okamoto M, Ito A (2013a) Molecular phylogeny of the genus Taenia (Cestoda: Taeniidae): proposals for the resurrection of Hydatigera Lamarck, 1816 and the creation of a new genus Versteria. Int J Parasitol 43:427–437

    Article  CAS  PubMed  Google Scholar 

  • Nakao M, Lavikainen A, Yanagida T, Ito A (2013b) Phylogenetic systematics of the genus Echinococcus. Int J Parasitol 43:1017–1029

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TGT, De NV, Vercruysse J, Dorny P, Le TH (2009) Genotypic characterization and species identification of Fasciola spp. with implications regarding the isolates infecting goats in Vietnam. Exp Parasitol 123:354–361

    Article  CAS  PubMed  Google Scholar 

  • Nieberding CM, Durette-Desset M-C, Vanderpooten A et al (2008) Geography and host biogeography matter in understanding phylogeography of a parasite. Mol Phylogenet Evol 47:538–554

    Article  CAS  PubMed  Google Scholar 

  • Norton AJ, Gower CM, Lamberton PHL, Webster BL, Lwambo NJS, Blair L, Fenwick A, Webster JP (2010) Genetic consequences of mass human chemotherapy for Schistosoma mansoni: population structure pre- and post-praziquantel treatment in Tanzania. Am J Trop Med Hyg 83:951–957

    Article  PubMed  PubMed Central  Google Scholar 

  • Nylin S, Agosta S, Bensch S et al (2018) A new paradigm for species association dynamics. Trends Ecol Evol 33:4–14

    Article  PubMed  Google Scholar 

  • O’Brien SJ, Stanyon R (1999) Phylogenomics. Ancestral primate viewed. Nature 402:365–366

    Article  PubMed  Google Scholar 

  • Olson PD, Cribb TH, Tkach VV, Bray RA, Littlewood DT (2003) Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). Int J Parasitol 33:733–755

    Article  CAS  PubMed  Google Scholar 

  • O'Malley MA, Koonin EV (2011) How stands the tree of life a century and a half after the origin? Biol Direct 6:32. https://doi.org/10.1186/1745-6150-6-32

    Article  PubMed  PubMed Central  Google Scholar 

  • Otranto D, Deplazes P (2019) Zoonotic nematodes of wild carnivores. IJP: Parasite Wildl 9:370–383

    Google Scholar 

  • Palumbi S (2001) Humans as the world’s greatest evolutionary force. Science 293:1786–1790

    Article  CAS  PubMed  Google Scholar 

  • Pareek CS, Smoczynski R, Tretyn A (2011) Sequencing technologies and genome sequencing. J Appl Genet 52:413–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patz JA, Graczyk T, Geller N, Vittor AY (2000) Effects of environmental change on emerging parasitic diseases. Int J Parasitol 30:1395–1405

    Article  CAS  PubMed  Google Scholar 

  • Patz JA, Gibbs HK, Foley JA, Roger JA, Smith KR (2007) Climate change and global health: quantifying a growing ethical crisis. EcoHealth 4:397–405

    Article  Google Scholar 

  • Patz JA, Olson SH, Uejio CK, Gibbs HK (2008) Disease emergence from global climate and land use change. Med Clin North Am 92:1473–1491

    Article  PubMed  Google Scholar 

  • Pecl GT, Araújo MB, Bell JD et al (2017) Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355(6332):eaai9214. https://doi.org/10.1126/science.aai9214

    Article  CAS  PubMed  Google Scholar 

  • Peng W, Criscione CD (2012) Ascariasis in people and pigs: new inferences from DNA analysis of worm populations. Infect Genet Evol 12:227–235

    Article  PubMed  Google Scholar 

  • Peng WD, Yuan K, Hu M, Zhou XM, Gasser RB (2005) Mutation scanning-coupled analysis of haplotypic variability in mitochondrial DNA regions reveals low gene flow between human and porcine Ascaris in endemic regions of China. Electrophoresis 26:4317–4326

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Ponce de Léon G, Nadler SA (2010) What we don’t recognize can hurt us: a plea for awareness about cryptic species. J Parasitol 96:453–464

    Article  Google Scholar 

  • Peterson AT (2011) Ecological niche conservatism: a time-structured view of evidence. J Biogeogr 28:817–827

    Article  Google Scholar 

  • Philippe H, Snell EA, Bapteste E, Lopez P, Holland PW, Casane D (2004) Phylogenomics of eukaryotes: impact of missing data on large alignments. Mol Biol Evol 21:1740–1752

    Article  CAS  PubMed  Google Scholar 

  • Philippe H, Delsuc F, Brinkmann H, Lartillot N (2005a) Phylogenomics. Ann Rev Ecol Evol Syst 36:541–562

    Article  Google Scholar 

  • Philippe H, Lartillot N, Brinkmann H (2005b) Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. Mol Biol Evol 22:1246–1253

    Article  CAS  PubMed  Google Scholar 

  • Phillips MJ, Delsuc F, Penny D (2004) Genome-scale phylogeny and the detection of systematic biases. Mol Biol Evol 21:1455–1458

    Article  CAS  PubMed  Google Scholar 

  • Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288

    Article  Google Scholar 

  • Polley L (2005) Navigating parasite webs and parasite flow: emerging and re-emerging parasitic zoonoses of wildlife origin. Int J Parasitol 35:1279–1294

    Article  PubMed  Google Scholar 

  • Polley L, Thompson RCA (2009) Parasite zoonoses and climate change: molecular tools for tracking shifting boundaries. Trends Parasitol 25:285–291

    Article  CAS  PubMed  Google Scholar 

  • Pozio E, Hoberg EP, La Rosa G, Zarlenga DS (2009) Molecular taxonomy and phylogeny of nematodes of the genus Trichinella. Infect Genet Evol 9:606–616

    Article  CAS  PubMed  Google Scholar 

  • Quental TB, Marshall CR (2010) Diversity dynamics: molecular phylogenies need the fossil record. Trends Ecol Evol 25:434–441

    Article  PubMed  Google Scholar 

  • Rabosky DL, Lovette IJ (2008) Explosive evolutionary radiations: decreasing speciation or increasing extinction through time? Evolution 62:1866–1875

    Article  PubMed  Google Scholar 

  • Riccardi A (2007) Are modern biological invasions an unprecedented form of global change? Conserv Biol 21:239–336

    Google Scholar 

  • Robertson LJ, van der Giessen JWB, Batz MB, Kojima M, Cahill S (2013) Have foodborne parasites finally become a global concern? Trends Parasitol 29:101–103

    Article  PubMed  Google Scholar 

  • Robertson LJ, Sprong H, Ortega YR, van der Giessen JWB, Fayer R (2014) Impacts of globalisation on foodborne parasites. Trends Parasitol 30:37–52

    Article  PubMed  Google Scholar 

  • Rokas A, Williams BL, King N, Carroll SB (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425:798–804

    Article  CAS  PubMed  Google Scholar 

  • Rollinson D, Kaukas A, Johnston DA, Simpson AJ, Tanaka M (1997) Some molecular insights into schistosome evolution. Int J Parasitol 27:11–28

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal B (2008) How has agriculture influenced the geography and genetics of animal parasites? Trends Parasitol 25:67–70

    Article  PubMed  Google Scholar 

  • Rosenthal BM, La Rosa G, Zarlenga D, Dunams D, Chunyu Y, Mingyuan L, Pozio E (2008) Human dispersal of Trichinella spiralis in domesticated pigs. Infect Genet Evol 8:799–805

    Article  CAS  PubMed  Google Scholar 

  • Roy SW, Gilbert W (2005) Resolution of a deep animal divergence by the pattern of intron conservation. Proc Natl Acad Sci U S A 102:4403–4408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rufener L, Keiser J, Kaminsky R, Mäser P, Nilsson D (2010) Phylogenomics of ligand-gated ion channels predicts monepantel effect. PLoS Patho 6:e1001091

    Article  CAS  Google Scholar 

  • Sapp SGH, Bradbury RS (2020) The forgotten exotic tapeworms: a review of uncommon zoonotic Cyclophyllidea. Parasitology 147:533–558. https://doi.org/10.1017/S003118202000013X

    Article  PubMed  Google Scholar 

  • Sharma R, Thompson PC, Hoberg EP et al (2020) Hiding in plain sight: discovery and phylogeography of a cryptic species of Trichinella (Nematoda: Trichinellidae) in wolverine (Gulo gulo). Int J Parasitol 50:277–287

    Article  CAS  PubMed  Google Scholar 

  • Shinya R, Morisaka H, Kikuchi T, Takeuchi Y, Ueda M, Futai K (2013) Secretome analysis of the pine wood nematode Bursaphelenchus xylophilus reveals the tangled roots of parasitism and its potential for molecular mimicry. PLoS One 8:e67377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva L, Liu S, Blanton RE (2006) Microsatellite analysis of pooled Schistosoma mansoni DNA: an approach for studies of parasite populations. Parasitology 132:331–338

    Article  CAS  PubMed  Google Scholar 

  • Small ST, Labbé F, Coulibaly YI, Nutman TB, King CL, Serre D, Zimmerman PA (2019) Human migration and the spread of the nematode parasite Wuchereria bancrofti. Mol Biol Evol 36:1931–1941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smart JJC (1959) Can biology be an exact science? Synthese 11:359–368

    Article  Google Scholar 

  • Smythe AB, Holovachov O, Kocot KM (2019) Improved phylogenomic sampling of free-living nematodes enhances resolution of higher-level nematode phylogeny. BMC Evol Biol 19:121. https://doi.org/10.1186/s12862-019-1444-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder SD, Loker ES (2000) Evolutionary relationships among the Schistosomatidae (Platyhelminthes: Digenea) and an Asian origin for Schistosoma. J Parasitol 86:283–288

    Article  CAS  PubMed  Google Scholar 

  • Steinauer ML (2009) The sex lives of parasites: investigating the mating system and mechanisms of sexual selection of the human pathogen Schistosoma mansoni. Int J Parasit 39:1157–1163

    Article  Google Scholar 

  • Steinauer ML, Hanelt B, Mwangi IN, Maina GM, Agola LE, Kinuthia JM, Mutuku MW, Mungai BN, Wilson WD, Mkoji GM, Loker ES (2008) Introgressive hybridization of human and rodent schistosome parasites in western Kenya. Mol Ecol 17:5062–5074

    Article  CAS  PubMed  Google Scholar 

  • Steinauer ML, Blouin MS, Criscione CD (2010) Applying evolutionary genetics to schistosome epidemiology. Infect Genet Evol 10:433–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strube C, Buschbaum S, Schnieder T (2012) Genes of the bovine lungworm Dictyocaulus viviparus associated with transition from pasture to parasitism. Infect Genet Evol 12:1178–1188

    Article  CAS  PubMed  Google Scholar 

  • Swain MT, Larkin DM, Caffrey CR, Davies SJ, Loukas A, Skelly PJ, Hoffmann KF (2011) Schistosoma comparative genomics: integrating genome structure, parasite biology and anthelmintic discovery. Trends Parasitol 27:555–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor SH, Latham SM, Woolhouse MEJ (2001) Risk factors for human disease emergence. Phil Trans R Soc Lond B Biol Sci 356:983–989

    Article  CAS  Google Scholar 

  • Taylor CM, Wang Q, Rosa BA, Huang SC, Powell K, Schedl T, Pearce EJ, Abubucker S, Mitreva M (2013) Discovery of anthelmintic drug targets and drugs using chokepoints in nematode metabolic pathways. PLoS Pathog 9:e1003505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terefe Y, Hailemariam Z, Menkir S et al (2014) Phylogenetic characterisation of Taenia tapeworms in spotted hyenas and reconsideration of the ‘out of Africa’ hypothesis of Taenia in humans. Int J Parasitol 44:533–541

    Article  CAS  PubMed  Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, Chicago, IL

    Book  Google Scholar 

  • Thompson PC, Zarlenga DS, Liu MY, Rosenthal BM (2017) Long-read sequencing improves assembly of Trichinella genomes 10-fold, revealing substantial synteny between lineages diverged over 7 million years. Parasitology 144:1302–1315

    Article  CAS  PubMed  Google Scholar 

  • Trivellone V, Hoberg EP, Boeger WA, Brooks DR (2022) Food security and emerging infectious disease: risk assessment and risk management. R Soc Open Sci:211687. https://doi.org/10.1098/rsos.211687

  • Trtanj J, Jantarasami L, Brunkard J et al (2016) Chapter 6: climate impacts on water-related illness. In: The impacts of climate change on human health in the United States: a scientific assessment. U.S. Global Change Research Program, Washington, DC, pp 157–188

    Google Scholar 

  • Tsai IJ, Zarowiecki M, Holroyd N et al (2013) The genomes of four tapeworm species reveal adaptations to parasitism. Nature 496:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Underwood AP, Supali T, Wu Y, Bianco AE (2000) Two microsatellite loci from Brugia malayi show polymorphisms among isolates from Indonesia and Malaysia. Mol Biochem Parasitol 106:299–302

    Article  CAS  PubMed  Google Scholar 

  • Valentim CLL, LoVerde PT, Anderson TJC, Criscione CD (2009) Efficient genotyping of Schistosoma mansoni miracidia following whole genome amplification. Mol Biochem Parasitol 166:81–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Megen H, Van den Elsen S, Holterman M, Karssen G, Mooyman P, Bongers T, Holovachov O, Bakker J, Helder J (2009) A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences. Nematology 11:927–950

    Article  CAS  Google Scholar 

  • Waeschenbach A, Littlewood DTJ (2017) Molecular framework for the Cestoda. In: Caira JN, Jensen K (eds) Planetary biodiversity inventory (PBI): tapeworms from vertebrate bowels of the earth (2008–2017), Special Publication, vol 25. Natural History Museum, The University of Kansas, Lawrence, KS, pp 431–451

    Google Scholar 

  • Watts N, Adger WN, Ayeb-Karlsson S et al (2017a) The lancet countdown: tracking progress on health and climate change. Lancet 389:1151–1164

    Article  PubMed  Google Scholar 

  • Watts N, Amann M, Ayeb-Karlsson S et al (2017b) The lancet countdown on health and climate change: from 25 years of inaction to a global transformation for public health. Lancet 391:1–50

    Google Scholar 

  • Weaver HJ, Hawdon JM, Hoberg EP (2010) Soil-transmitted helminthiases: implications of climate change and human behavior. Trends Parasitol 26:574–581

    Article  PubMed  Google Scholar 

  • Whitmee S, Haines A, Beyrer C et al (2015) Safeguarding human health in the Anthropocene epoch: report of the Rockefeller Foundation–lancet commission on planetary health. Lancet 386:1973–2028

    Article  PubMed  Google Scholar 

  • Wiley EO, Lieberman BS (2011) Phylogenetics: the theory and practice of phylogenetic systematics, 2nd edn. Wiley-Blackwell, Hoboken

    Book  Google Scholar 

  • Wolf YI, Rogozin IB, Koonin EV (2004) Coelomata and not Ecdysozoa: evidence from genome-wide phylogenetic analysis. Genome Res 14:29–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe N, Panosian Dunavan C, Diamond J (2007) Origins of major human infectious diseases. Nature 447:279–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Xu M, Sun X et al (2019) The genetic basis of adaptive evolution in parasitic environment from the Angiostrongylus cantonensis genome. PLoS Negl Trop Dis 13:e0007846. https://doi.org/10.1371/journal.pntd.0007846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamane K, Suzuki Y, Tachi E et al (2012) Recent hybridization between Taenia asiatica and Taenia saginata. Parasitol Int 61:351–355

    Article  CAS  PubMed  Google Scholar 

  • Yanagida T, Carod J-F, Mirua T, Nakayama T, Sako Y, Nakao M, Hoberg EP, Ito A (2014) Genetics of the pig tapeworm in Madagascar reveal a history of human dispersal and colonization. PLoS One 9(10):e109003. https://doi.org/10.1371/journal.pone.0109002

    Article  CAS  Google Scholar 

  • Yuan H, Jiang J, Jiménez FA, Hoberg EP, Cook JA, Galbreath KE, Li C (2016) Target gene enrichment in the cyclophyllidean cestodes, the most diverse group of tapeworms. Mol Ecol Res 16:1095–1106

    Article  CAS  Google Scholar 

  • Zarlenga DS, Rosenthal BM, La Rosa G, Pozio E, Hoberg EP (2006) Post Miocene expansion, colonization, and host switching drove speciation among extant nematodes of the archaic genus Trichinella. Proc Natl Acad Sci U S A 103:7354–7359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarlenga DS, Wang Z, Mitreva M (2016) Trichinella Spiralis: adaptation and parasitism. Vet Parasitol 231:8–21

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu Q, Mai U, Pfeiffer W et al (2019) Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains bacteria and archaea. Nat Commun 10:5477. https://doi.org/10.1038/s41467-019-13443-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zarlenga, D.S., Hoberg, E.P., Detwiler, J.T. (2022). History and Diversity: Establishing a Context for Helminth Biology. In: Bruschi, F. (eds) Helminth Infections and their Impact on Global Public Health. Springer, Cham. https://doi.org/10.1007/978-3-031-00303-5_2

Download citation

Publish with us

Policies and ethics