Burges, C.J.C., et al.: Learning to rank using gradient descent. In: Proceedings of ICML. ACM International Conference Proceeding Series (2005)
Google Scholar
Cai, D., Lam, W.: Graph transformer for graph-to-sequence learning. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020 (2020)
Google Scholar
Cai, R., Liang, Z., Xu, B., Li, Z., Hao, Y., Chen, Y.: TAG : type auxiliary guiding for code comment generation. In: Proceedings of ACL (2020)
Google Scholar
Cao, R., Chen, L., Chen, Z., Zhao, Y., Zhu, S., Yu, K.: LGESQL: line graph enhanced text-to-SQL model with mixed local and non-local relations. In: Proceedings of ACL (2021)
Google Scholar
Cao, Z., Wei, F., Li, W., Li, S.: Faithful to the original: fact aware neural abstractive summarization. In: Proceedings of AAAI (2018)
Google Scholar
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of ICML. Proceedings of Machine Learning Research (2020)
Google Scholar
Chen, W., Chen, J., Su, Y., Chen, Z., Wang, W.Y.: Logical natural language generation from open-domain tables. In: Proceedings of ACL (2020)
Google Scholar
Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20(1), 37–46 (1960)
CrossRef
Google Scholar
Falke, T., Ribeiro, L.F.R., Utama, P.A., Dagan, I., Gurevych, I.: Ranking generated summaries by correctness: an interesting but challenging application for natural language inference. In: Proceedings of ACL (2019)
Google Scholar
Gabriel, S., Celikyilmaz, A., Jha, R., Choi, Y., Gao, J.: GO FIGURE: a meta evaluation of factuality in summarization. In: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021 (2021)
Google Scholar
Goodrich, B., Rao, V., Liu, P.J., Saleh, M.: Assessing the factual accuracy of generated text. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2019, 4–8 August 2019, Anchorage (2019)
Google Scholar
Guo, J., et al.: Towards complex text-to-SQL in cross-domain database with intermediate representation. In: Proceedings of ACL (2019)
Google Scholar
Hu, X., Li, G., Xia, X., Lo, D., Jin, Z.: Deep code comment generation. In: 2018 IEEE/ACM 26th International Conference on Program Comprehension (ICPC). IEEE (2018)
Google Scholar
Iyer, S., Konstas, I., Cheung, A., Zettlemoyer, L.: Summarizing source code using a neural attention model. In: Proceedings of ACL (2016)
Google Scholar
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of ICLR (2015)
Google Scholar
Koncel-Kedziorski, R., Bekal, D., Luan, Y., Lapata, M., Hajishirzi, H.: Text generation from knowledge graphs with graph transformers. In: Proceedings of NAACL-HLT (2019)
Google Scholar
Kryscinski, W., Keskar, N.S., McCann, B., Xiong, C., Socher, R.: Neural text summarization: a critical evaluation. In: Proceedings of EMNLP (2019)
Google Scholar
Lee, S., Lee, D.B., Hwang, S.J.: Contrastive learning with adversarial perturbations for conditional text generation. In: Proceedings of ICLR (2021)
Google Scholar
Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In: Proceedings of ACL (2020)
Google Scholar
Lin, C.Y.: ROUGE: a package for automatic evaluation of summaries. In: Text Summarization Branches Out (2004)
Google Scholar
Lin, X.V., Socher, R., Xiong, C.: Bridging textual and tabular data for cross-domain text-to-SQL semantic parsing. In: Findings of the Association for Computational Linguistics: EMNLP 2020 (2020)
Google Scholar
Liu, Y., et al.: RoBERTa: A robustly optimized BERT pretraining approach. arXiv preprint (2019)
Google Scholar
Logeswaran, L., Lee, H.: An efficient framework for learning sentence representations. In: Proceedings of ICLR (2018)
Google Scholar
Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint (2018)
Google Scholar
Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of ACL (2002)
Google Scholar
Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint (2019)
Google Scholar
Scholak, T., Schucher, N., Bahdanau, D.: PICARD: parsing incrementally for constrained auto-regressive decoding from language models. arXiv preprint (2021)
Google Scholar
Sellam, T., Das, D., Parikh, A.: BLEURT: learning robust metrics for text generation. In: Proceedings of ACL (2020)
Google Scholar
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4–9 December 2017, Long Beach (2017)
Google Scholar
Verma, V., Luong, T., Kawaguchi, K., Pham, H., Le, Q.V.: Towards domain-agnostic contrastive learning. In: Proceedings of ICML. Proceedings of Machine Learning Research (2021)
Google Scholar
Wang, B., Shin, R., Liu, X., Polozov, O., Richardson, M.: RAT-SQL: relation-aware schema encoding and linking for text-to-SQL parsers. In: Proceedings of ACL (2020)
Google Scholar
Wang, Z., Wang, X., An, B., Yu, D., Chen, C.: Towards faithful neural table-to-text generation with content-matching constraints. In: Proceedings of ACL (2020)
Google Scholar
Xu, K., Wu, L., Wang, Z., Feng, Y., Sheinin, V.: SQL-to-text generation with graph-to-sequence model. In: Proceedings of EMNLP (2018)
Google Scholar
Yang, Z., Cheng, Y., Liu, Y., Sun, M.: Reducing word omission errors in neural machine translation: a contrastive learning approach. In: Proceedings of ACL (2019)
Google Scholar
Yu, T., et al.: CoSQL: a conversational text-to-SQL challenge towards cross-domain natural language interfaces to databases. In: Proceedings of EMNLP (2019)
Google Scholar
Yu, T., et al.: Spider: a large-scale human-labeled dataset for complex and cross-domain semantic parsing and text-to-SQL task. In: Proceedings of EMNLP (2018)
Google Scholar
Zeng, J., et al.: Photon: a robust cross-domain text-to-SQL system. In: Proceedings of ACL (2020)
Google Scholar
Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: evaluating text generation with BERT. In: Proceedings of ICLR (2020)
Google Scholar
Zhang, Y., Merck, D., Tsai, E., Manning, C.D., Langlotz, C.: Optimizing the factual correctness of a summary: a study of summarizing radiology reports. In: Proceedings of ACL (2020)
Google Scholar
Zhong, V., Xiong, C., Socher, R.: Seq2sql: Generating structured queries from natural language using reinforcement learning. arXiv preprint (2017)
Google Scholar
Zhong, W., et al.: LogicalFactChecker: leveraging logical operations for fact checking with graph module network. In: Proceedings of ACL (2020)
Google Scholar