Skip to main content

TRHyTE: Temporal Knowledge Graph Embedding Based on Temporal-Relational Hyperplanes

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13245))

Included in the following conference series:

Abstract

Temporal Knowledge Graph Embedding (TKGE) aims at encoding evolving facts with high-dimensional vectorial representations. Although a representative hyperplane-based TKGE approach, namely HyTE, has achieved remarkable performance, it still suffers from several problems including (i) ignorance of latent temporal properties and diversity of relations; (ii) neglect of temporal dependency between adjacent hyperplanes; (iii) inefficient static random negative sampling method; (iv) incomplete testing on partial time information. To address these issues, we propose TRHyTE, a novel Temporal-Relational Hyperplane based TKGE model, which defines three typical properties, including interval, open-interval, and instantaneousness temporal, for relations and correspondingly constructs three relational sub-KGs, supporting distinguishing learning for facts. Within each sub-KG, TRHyTE transforms entities into relation space first, and then explicitly projects transformed entities and relations into temporal-relational hyperplanes to learn time-relation-aware embeddings. Moreover, Gate Recurrent Unit is leveraged to simulate TKG evolution so as to capture temporal dependency between adjacent hyperplanes. Additionally, we develop a dynamic negative samples mechanism for robust training. In testing phase, an expand-and-best-merge strategy is crafted to realize a complete testing on all valid time intervals. Extensive experiments on two well-known benchmarks verify the effectiveness of our proposals.

L. Yuan and Z. Li—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems 26 (2013)

    Google Scholar 

  2. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: EMNLP (2014)

    Google Scholar 

  3. Dasgupta, S.S., Ray, S.N., Talukdar, P.: HyTE: hyperplane-based temporally aware knowledge graph embedding. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2001–2011 (2018)

    Google Scholar 

  4. Erxleben, F., Günther, M., Krötzsch, M., Mendez, J., Vrandečić, D.: Introducing Wikidata to the linked data web. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 50–65. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-9_4

    Chapter  Google Scholar 

  5. Esteban, C., Tresp, V., Yang, Y., Baier, S., Krompaß, D.: Predicting the co-evolution of event and knowledge graphs. In: 2016 19th International Conference on Information Fusion (FUSION), pp. 98–105. IEEE (2016)

    Google Scholar 

  6. García-Durán, A., Dumančić, S., Niepert, M.: Learning sequence encoders for temporal knowledge graph completion. arXiv preprint arXiv:1809.03202 (2018)

  7. Goel, R., Kazemi, S.M., Brubaker, M., Poupart, P.: Diachronic embedding for temporal knowledge graph completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3988–3995 (2020)

    Google Scholar 

  8. Jain, P., Rathi, S., Chakrabarti, S., et al.: Temporal knowledge base completion: new algorithms and evaluation protocols. arXiv preprint arXiv:2005.05035 (2020)

  9. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 687–696 (2015)

    Google Scholar 

  10. Jiang, T., Liu, T., Ge, T., Sha, L., Li, S., Chang, B., Sui, Z.: Encoding temporal information for time-aware link prediction. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2350–2354 (2016)

    Google Scholar 

  11. Jin, W., et al.: Recurrent event network: Global structure inference over temporal knowledge graph (2019)

    Google Scholar 

  12. Kazemi, S.M., Poole, D.: Simple embedding for link prediction in knowledge graphs. arXiv preprint arXiv:1802.04868 (2018)

  13. Lacroix, T., Obozinski, G., Usunier, N.: Tensor decompositions for temporal knowledge base completion. arXiv preprint arXiv:2004.04926 (2020)

  14. Leblay, J., Chekol, M.W., Liu, X.: Towards temporal knowledge graph embeddings with arbitrary time precision. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 685–694 (2020)

    Google Scholar 

  15. Mahdisoltani, F., Biega, J., Suchanek, F.M.: A knowledge base from multilingual wikipedias-yago3. Technical report, Telecom ParisTech (2014). http://suchanek.name/work/publications

  16. Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of knowledge graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)

    Google Scholar 

  17. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. In: ICML (2011)

    Google Scholar 

  18. Sadeghian, A., Armandpour, M., Colas, A., Wang, D.Z.: ChronoR: rotation based temporal knowledge graph embedding. arXiv preprint arXiv:2103.10379 (2021)

  19. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: RotatE: knowledge graph embedding by relational rotation in complex space. arXiv preprint arXiv:1902.10197 (2019)

  20. Trivedi, R., Dai, H., Wang, Y., Song, L.: Know-evolve: deep temporal reasoning for dynamic knowledge graphs. In: International Conference on Machine Learning, pp. 3462–3471. PMLR (2017)

    Google Scholar 

  21. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: International Conference on Machine Learning, pp. 2071–2080. PMLR (2016)

    Google Scholar 

  22. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28 (2014)

    Google Scholar 

  23. Wang, Z., Li, X.: Hybrid-TE: hybrid translation-based temporal knowledge graph embedding. In: 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), pp. 1446–1451. IEEE (2019)

    Google Scholar 

  24. Wu, J., Cao, M., Cheung, J.C.K., Hamilton, W.L.: TeMP: temporal message passing for temporal knowledge graph completion. arXiv preprint arXiv:2010.03526 (2020)

  25. Xu, C., Chen, Y.Y., Nayyeri, M., Lehmann, J.: Temporal knowledge graph completion using a linear temporal regularizer and multivector embeddings. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 2569–2578 (2021)

    Google Scholar 

  26. Xu, C., Nayyeri, M., Alkhoury, F., Yazdi, H.S., Lehmann, J.: TeRo: a time-aware knowledge graph embedding via temporal rotation. arXiv preprint arXiv:2010.01029 (2020)

  27. Xu, C., Nayyeri, M., Alkhoury, F., Yazdi, H., Lehmann, J.: Temporal knowledge graph completion based on time series Gaussian embedding. In: Pan, J.Z., et al. (eds.) ISWC 2020. LNCS, vol. 12506, pp. 654–671. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62419-4_37

    Chapter  Google Scholar 

  28. Xu, Y., et al.: Time-aware graph embedding: a temporal smoothness and task-oriented approach. arXiv preprint arXiv:2007.11164 (2020)

  29. Xu, Y., Song, M., Lv, X., et al.: RTFE: a recursive temporal fact embedding framework for temporal knowledge graph completion. arXiv preprint arXiv:2009.14653 (2020)

  30. Yang, B., Yih, W.t., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575 (2014)

  31. Zhang, S., Tay, Y., Yao, L., Liu, Q.: Quaternion knowledge graph embeddings. arXiv preprint arXiv:1904.10281 (2019)

  32. Zhou, Y., Peng, J., Wang, L., Zha, D., Mu, N.: SEDE: semantic evolution-based dynamic knowledge graph embedding. Aust. J. Intell. Inf. Process. Syst. 16(4), 64–73 (2019)

    Google Scholar 

  33. Zhu, C., Chen, M., Fan, C., Cheng, G., Zhan, Y.: Learning from history: modeling temporal knowledge graphs with sequential copy-generation networks. arXiv preprint arXiv:2012.08492 (2020)

Download references

Acknowledgments

This research is supported by the National Key R&D Program of China (No. 2018AAA0101900), the National Natural Science Foundation of China (Grant No. 62072323, 62102276), the Natural Science Foundation of Jiangsu Province (No. BK20191420, BK20210705, BK20211307), the Major Program of Natural Science Foundation of Educational Commission of Jiangsu Province, China (Grant No.19KJA610002, 21KJD520005), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Collaborative Innovation Center of Novel Software Technology and Industrialization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfeng Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yuan, L. et al. (2022). TRHyTE: Temporal Knowledge Graph Embedding Based on Temporal-Relational Hyperplanes. In: Bhattacharya, A., et al. Database Systems for Advanced Applications. DASFAA 2022. Lecture Notes in Computer Science, vol 13245. Springer, Cham. https://doi.org/10.1007/978-3-031-00123-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-00123-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-00122-2

  • Online ISBN: 978-3-031-00123-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics