Skip to main content

Integrative Computational Biology, AI, and Radiomics: Building Explainable Models by Integration of Imaging, Omics, and Clinical Data

Abstract

Addressing important clinical questions requires systematic knowledge management and analysis of the large volume of information. Understanding and successfully treating multi-genic diseases requires systems-oriented research approach focused on the implication of disease-perturbed molecular interaction networks and pathways. These networks represent crucial relationships among genes and proteins, their mutations, chromosomal aberrations, microRNA deregulation, and other epigenetic and metabolic changes.

Artificial intelligence research focuses on the development of diverse algorithms, their application in multiple areas, and system usability questions. Decision support systems in medicine need to be robust across assays, instruments, and cohorts, handling uncertainty and missing data gracefully. However, quality of data and literature-based evidence may be questionable, leading to low reproducibility and errors. Creating explainable models is essential to ensure trust in recommendations and decision support. Patient-centric, data-driven medicine requires high quality, comprehensive data sets, multiple levels of independent validation, and explainable models. Integration of multiple and diverse data sets and algorithms can improve confidence in findings, and reduce both type I and II errors. It is also essential to determine who and how will use the system and optimize it accordingly, as even useful applications may result in negative outcomes when used improperly or in an incorrect context.

When solving complex problems, one solution is usually not enough. Neither one method, nor one data set can cover the complexities. Integrating methods and data sets provides a better solution. Artificial intelligence, multimodal imaging, integrative computational biology, and wearable devices are transforming translational research. We are moving from diagnosing and treating disease to preventing it. Data mining and machine learning algorithms identify trends and interesting patterns in the cohorts, ensemble methods then apply it with confidence for each individual, and calibrated trends provide predicted preventive measures for each patient.

Keywords

  • Precision medicine
  • Personalized medicine
  • Radiomics
  • Integrative computational biology
  • Artificial intelligence
  • Data mining
  • Machine learning

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

18F-FDG:

18Fluoro-deoxy-glucose

AD:

Alzheimer’s disease

AI:

Artificial intelligence

AUC:

Area under the curve

cDNA:

Complementary DNA

CNIL:

National Commission on Informatics and Liberty

CPU:

Central processing unit

CT:

Computer tomography

DLBCL:

Diffuse large B cell lymphoma

DNA:

Deoxyribonucleic acid

ECG:

Electrocardiography

EEG:

Electroencephalography

EFS:

Event-free survival

EIM:

Electrical impedance myography

EOG:

Electrooculography

EPR:

Electronic patient record

FCSRT:

Free and cued selective reminding test

fMRI:

Functional magnetic resonance imaging

GLCM:

Grey level co-occurrence matrix

GLNU:

Grey-level non-uniformity

GLSZM:

Grey-level size zone matrix

GPU:

Graphical processing unit

HGZE:

High grey-level zone emphasis

HT:

High-throughput

ICD:

International classification of diseases

IID:

Integrated interactions database

IPIaa:

Age-adjusted international prognostic index

LASSI-L :

Loewenstein-Acevedo scale for semantic interference and learning

LGZE:

Low grey-level zone emphasis

LUAD:

Lung adenocarcinoma

LZE:

Long-zone emphasis

LZHGE:

Long-zone high grey-level emphasis

LZLGE:

Long-zone low grey-level emphasis

mirDIP :

microRNA data integration portal

miRNA:

microRNA

ML:

Machine learning

MRI:

Magnetic resonance imaging

MSK:

Musculoskeletal

MTV:

Metabolic tumor volume

NDD:

Neurodegenerative diseases

NHL:

Non-Hodgkin’s lymphoma

OS:

Overall survival

OSEM:

Ordered subset expectation maximisation

pathDIP:

Pathway data integration portal

PET:

Positron emission tomography

piRNA:

Piwi-interacting RNA

PPI:

Protein–protein interaction

PSF:

Point spread function

RNA:

Ribonucleic acid

RNAseq:

RNA sequencing

ROC:

Receiver operating characteristic

scRNAseq:

Single-cell RNA sequencing

SD:

Standard deviation

SNOMED CT:

Standard nomenclature of medicine clinical terms

SUV:

Standardised uptake value

SZE:

Short-zone emphasis

SZHGE:

Short-zone high grey-level emphasis

SZLGE:

Short-zone low grey-level emphasis

TCGA:

The cancer genome atlas

TILs:

Tumor infiltrated lymphocytes

VOI:

Volume of interest

ZLNU:

Zone length non-uniformity

ZP:

Zone percentage

References

  1. Andrea D, Xueqing Z, Tauanne DA, Andrea M-M, Gene Ching CK, João MLD, et al. Substitution mutational signatures in whole-genome sequenced cancers in the UK population. Science. 2022;376(6591):ab19283.

    Google Scholar 

  2. Fang FC, Steen RG, Casadevall A. Misconduct accounts for the majority of retracted scientific publications. Proc Natl Acad Sci U S A. 2012;109(42):17028–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Mehra MR, Desai SS, Kuy S, Henry TD, Patel AN. Retraction: cardiovascular disease, drug therapy, and mortality in Covid-19. N Engl J Med [Letter Retraction of Publication]. 2020;382(26):2582. https://doi.org/10.1056/NEJMoa2007621.

    CrossRef  PubMed  Google Scholar 

  4. Mehra MR, Ruschitzka F, Patel AN. Retraction-hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet [Retraction of Publication]. 2020;395(10240):1820.

    CAS  PubMed  Google Scholar 

  5. Hermjakob H, Montecchi-Palazzi L, Bader G, Wojcik J, Salwinski L, Ceol A, et al. The HUPO PSI’s molecular interaction format—a community standard for the representation of protein interaction data. Nat Biotechnol. 2004;22(2):177–83.

    CAS  PubMed  Google Scholar 

  6. Orchard S, Kerrien S, Abbani S, Aranda B, Bhate J, Bidwell S, et al. Protein interaction data curation: the International Molecular Exchange (IMEx) consortium. Nat Methods [Research Support, NIH, Extramural Research Support, Non-US Gov’t]. 2012;9(4):345–50.

    CAS  PubMed  Google Scholar 

  7. Del-Toro N, Duesbury M, Koch M, Perfetto L, Shrivastava A, Ochoa D, et al. Capturing variation impact on molecular interactions in the IMEx Consortium mutations data set. Nat Commun [Dataset Research Support, NIH, Extramural Research Support, Non-US Gov’t]. 2019;10(1):10.

    CAS  PubMed  Google Scholar 

  8. Perfetto L, Pastrello C, Del-Toro N, Duesbury M, Iannuccelli M, Kotlyar M, et al. The IMEx coronavirus interactome: an evolving map of Coronaviridae-host molecular interactions. Database (Oxford). 2020:baaa096.

    Google Scholar 

  9. Porras P, Barrera E, Bridge A, Del-Toro N, Cesareni G, Duesbury M, et al. Towards a unified open access dataset of molecular interactions. Nat Commun. 2020;11(1):6144.

    Google Scholar 

  10. Barth-Jones D, El Emam K, Bambauer J, Cavoukian A, Malin B. Assessing data intrusion threats. Science [Letter Comment]. 2015;348(6231):194–5.

    CAS  PubMed  Google Scholar 

  11. Cavoukian A. Safeguarding health information. Health Law Can. 1998;18(4):115–7.

    CAS  PubMed  Google Scholar 

  12. Moore W, Frye S. Review of HIPAA, Part 1: history, protected health information, and privacy and security rules. J Nucl Med Technol [Review]. 2019;47(4):269–72.

    PubMed  Google Scholar 

  13. Torkzadehmahani R, Nasirigerdeh R, Blumenthal DB, Kacprowski T, List M, Matschinske J, et al. Privacy-preserving artificial intelligence techniques in biomedicine. arXiv:2007.11621. 2020.

    Google Scholar 

  14. Zerka F, Barakat S, Walsh S, Bogowicz M, Leijenaar RTH, Jochems A, et al. Systematic review of privacy-preserving distributed machine learning from federated databases in health care. JCO Clin Cancer Inform [Research Support, Non-US Gov’t]. 2020;4:184–200.

    PubMed  Google Scholar 

  15. Kaissis GA, Makowski MR, Rückert D, Braren RF. Secure, privacy-preserving and federated machine learning in medical imaging. Nat Mach Intell. 2020;2:305–11.

    Google Scholar 

  16. Zwanenburg A. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur J Nucl Med Mol Imaging. 2019;46(13):2638–55.

    PubMed  Google Scholar 

  17. Lavery JV, IJsselmuiden C. The research fairness initiative: filling a critical gap in global research ethics. Gates Open Res. 2018;2:58.

    PubMed  PubMed Central  Google Scholar 

  18. Krynski TR, Tenenbaum JB. The role of causality in judgment under uncertainty. J Exp Psychol Gen. 2007;136(3):430–50.

    PubMed  Google Scholar 

  19. Begley CG, Ellis LM. Drug development: raise standards for preclinical cancer research. Nature. 2012;483(7391):531–3.

    CAS  PubMed  Google Scholar 

  20. Prinz F, Schlange T, Asadullah K. Believe it or not: how much can we rely on published data on potential drug targets? Nat Rev Drug Discov [Letter Comment]. 2011;10(9):712.

    CAS  PubMed  Google Scholar 

  21. Clements JC. Is the reproducibility crisis fuelling poor mental health in science? Nature [News Comment]. 2020;582(7811):300.

    CAS  PubMed  Google Scholar 

  22. Collins FS, Tabak LA. Policy: NIH plans to enhance reproducibility. Nature. 2014;505(7485):612–3.

    PubMed  PubMed Central  Google Scholar 

  23. Yang Z, Zhang A, Sudjianto A. Enhancing explainability of neural networks through architecture constraints. IEEE Trans Neural Netw Learn Syst. 2021;32(6):2610–21.

    PubMed  Google Scholar 

  24. Windisch P, Weber P, Furweger C, Ehret F, Kufeld M, Zwahlen D, et al. Implementation of model explainability for a basic brain tumor detection using convolutional neural networks on MRI slices. Neuroradiology. 2020;62(11):1515–8.

    PubMed  Google Scholar 

  25. Holzinger A, Langs G, Denk H, Zatloukal K, Muller H. Causability and explainability of artificial intelligence in medicine. Wiley Interdiscip Rev Data Min Knowl Discov [Review]. 2019;9(4):e1312.

    PubMed  Google Scholar 

  26. Coeckelbergh M. Artificial intelligence, responsibility attribution, and a relational justification of explainability. Sci Eng Ethics. 2020;26(4):2051–68.

    PubMed  Google Scholar 

  27. Petkovic D, Altman R, Wong M, Vigil A. Improving the explainability of random forest classifier—user centered approach. In: Pacific symposium on biocomputing pacific symposium on biocomputing. [Research Support, NIH, Extramural Research Support, Non-US Gov’t]. 2018;23:204–15.

    Google Scholar 

  28. Kalra A, Chakraborty A, Fine B, Reicher J. Machine learning for automation of radiology protocols for quality and efficiency improvement. J Am Coll Radiol. 2020;17(9):1149–58.

    PubMed  Google Scholar 

  29. Montani S, Striani M. Artificial intelligence in clinical decision support: a focused literature survey. Yearbook of medical informatics. Review. 2019;28(1):120–7.

    Google Scholar 

  30. Diprose WK, Buist N, Hua N, Thurier Q, Shand G, Robinson R. Physician understanding, explainability, and trust in a hypothetical machine learning risk calculator. J Am Med Inform Assoc. 2020;27(4):592–600.

    PubMed  PubMed Central  Google Scholar 

  31. Lohmann P, Kocher M, Ruge MI, Visser-Vandewalle V, Shah NJ, Fink GR, et al. PET/MRI radiomics in patients with brain metastases. Front Neurol [Review]. 2020;11:1.

    PubMed  Google Scholar 

  32. Sollini M, Antunovic L, Chiti A, Kirienko M. Towards clinical application of image mining: a systematic review on artificial intelligence and radiomics. Eur J Nucl Med Mol Imaging. 2019;46(13):2656–72.

    PubMed  PubMed Central  Google Scholar 

  33. Ibrahim A, Vallieres M, Woodruff H, Primakov S, Beheshti M, Keek S, et al. Radiomics analysis for clinical decision support in nuclear medicine. Semin Nucl Med [Review]. 2019;49(5):438–49.

    PubMed  Google Scholar 

  34. Lee G, Lee HY, Park H, Schiebler ML, van Beek EJR, Ohno Y, et al. Radiomics and its emerging role in lung cancer research, imaging biomarkers and clinical management: state of the art. Eur J Radiol [Review]. 2017;86:297–307.

    PubMed  Google Scholar 

  35. Anthony GJ, Cunliffe A, Castillo R, Pham N, Guerrero T, Armato SG 3rd, et al. Incorporation of pre-therapy (18) F-FDG uptake data with CT texture features into a radiomics model for radiation pneumonitis diagnosis. Med Phys. 2017;44(7):3686–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yin Q, Hung SC, Rathmell WK, Shen L, Wang L, Lin W, et al. Integrative radiomics expression predicts molecular subtypes of primary clear cell renal cell carcinoma. Clin Radiol. 2018;73(9):782–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Li ZY, Wang XD, Li M, Liu XJ, Ye Z, Song B, et al. Multi-modal radiomics model to predict treatment response to neoadjuvant chemotherapy for locally advanced rectal cancer. World J Gastroenterol. 2020;26(19):2388–402.

    PubMed  PubMed Central  Google Scholar 

  38. Zhuo EH, Zhang WJ, Li HJ, Zhang GY, Jing BZ, Zhou J, et al. Radiomics on multi-modalities MR sequences can subtype patients with non-metastatic nasopharyngeal carcinoma (NPC) into distinct survival subgroups. Eur Radiol. 2019;29(10):5590–9.

    PubMed  Google Scholar 

  39. Zhuo EH, Zhang WJ, Li HJ, Zhang GY, Jing BZ, Zhou J, et al. Correction to: Radiomics on multi-modalities MR sequences can subtype patients with non-metastatic nasopharyngeal carcinoma (NPC) into distinct survival subgroups. Eur Radiol [Published Erratum]. 2019;29(7):3957.

    PubMed  Google Scholar 

  40. Lv W, Ashrafinia S, Ma J, Lu L, Rahmim A. Multi-level multi-modality fusion radiomics: application to PET and CT imaging for prognostication of head and neck cancer. IEEE J Biomed Health Inform. 2020;24(8):2268–77.

    PubMed  Google Scholar 

  41. Bagher-Ebadian H, Janic B, Liu C, Pantelic M, Hearshen D, Elshaikh M, et al. Detection of dominant intra-prostatic lesions in patients with prostate cancer using an artificial neural network and MR multi-modal radiomics analysis. Front Oncol. 2019;9:1313.

    PubMed  PubMed Central  Google Scholar 

  42. Zhong QZ, Long LH, Liu A, Li CM, Xiu X, Hou XY, et al. Radiomics of multiparametric MRI to predict biochemical recurrence of localized prostate cancer after radiation therapy. Front Oncol. 2020;10:731.

    PubMed  PubMed Central  Google Scholar 

  43. Wagner MW, Bilbily A, Beheshti M, Shammas A, Vali R. Artificial intelligence and radiomics in pediatric molecular imaging. Methods [Review]. 2021;188:37–43.

    CAS  PubMed  Google Scholar 

  44. Dercle L, Lu L, Schwartz LH, Qian M, Tejpar S, Eggleton P, et al. Radiomics response signature for identification of metastatic colorectal cancer sensitive to therapies targeting EGFR pathway. J Natl Cancer Inst. 2020;112(9):902–12.

    PubMed  PubMed Central  Google Scholar 

  45. Ha S. Perspectives in radiomics for personalized medicine and theranostics. Nucl Med Mol Imaging. 2019;53(3):164–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen C, Guo X, Wang J, Guo W, Ma X, Xu J. The diagnostic value of radiomics-based machine learning in predicting the grade of meningiomas using conventional magnetic resonance imaging: a preliminary study. Front Oncol. 2019;9:1338.

    PubMed  PubMed Central  Google Scholar 

  47. Leijenaar RT, Carvalho S, Velazquez ER, van Elmpt WJ, Parmar C, Hoekstra OS, et al. Stability of FDG-PET radiomics features: an integrated analysis of test-retest and inter-observer variability. Acta Oncol [Research Support, Non-US Gov’t]. 2013;52(7):1391–7.

    CAS  PubMed  Google Scholar 

  48. Jack CR Jr, Barkhof F, Bernstein MA, Cantillon M, Cole PE, Decarli C, et al. Steps to standardization and validation of hippocampal volumetry as a biomarker in clinical trials and diagnostic criterion for Alzheimer’s disease. Alzheimers Dement. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 2011;7(4):474–85e4.

    PubMed  Google Scholar 

  49. Rizzo S, Botta F, Raimondi S, Origgi D, Buscarino V, Colarieti A, et al. Radiomics of high-grade serous ovarian cancer: association between quantitative CT features, residual tumour and disease progression within 12 months. Eur Radiol. 2018;28(11):4849–59.

    PubMed  Google Scholar 

  50. Sala E, Mema E, Himoto Y, Veeraraghavan H, Brenton JD, Snyder A, et al. Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging. Clin Radiol [Review]. 2017;72(1):3–10.

    CAS  PubMed  Google Scholar 

  51. Vargas HA, Veeraraghavan H, Micco M, Nougaret S, Lakhman Y, Meier AA, et al. A novel representation of inter-site tumour heterogeneity from pre-treatment computed tomography textures classifies ovarian cancers by clinical outcome. Eur Radiol [Evaluation Studies]. 2017;27(9):3991–4001.

    PubMed  Google Scholar 

  52. Xie C, Du R, Ho JW, Pang HH, Chiu KW, Lee EY, et al. Effect of machine learning re-sampling techniques for imbalanced datasets in (18)F-FDG PET-based radiomics model on prognostication performance in cohorts of head and neck cancer patients. Eur J Nucl Med Mol Imaging. 2020;47(12):2826–35.

    PubMed  Google Scholar 

  53. Wildeboer RR, Mannaerts CK, van Sloun RJG, Budaus L, Tilki D, Wijkstra H, et al. Automated multiparametric localization of prostate cancer based on B-mode, shear-wave elastography, and contrast-enhanced ultrasound radiomics. Eur Radiol. 2020;30(2):806–15.

    PubMed  Google Scholar 

  54. Wang X, Wan Q, Chen H, Li Y, Li X. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods. Eur Radiol. 2020;30(8):4595–605.

    PubMed  Google Scholar 

  55. Wang H, Song B, Ye N, Ren J, Sun X, Dai Z, et al. Machine learning-based multiparametric MRI radiomics for predicting the aggressiveness of papillary thyroid carcinoma. Eur J Radiol [Evaluation Study]. 2020;122:108755.

    PubMed  Google Scholar 

  56. Wang H, Chen H, Duan S, Hao D, Liu J. Radiomics and machine learning with multiparametric preoperative MRI may accurately predict the histopathological grades of soft tissue sarcomas. J Magn Reson Imaging. 2020;51(3):791–7.

    PubMed  Google Scholar 

  57. Song J, Yin Y, Wang H, Chang Z, Liu Z, Cui L. A review of original articles published in the emerging field of radiomics. Eur J Radiol [Review]. 2020;127:108991.

    PubMed  Google Scholar 

  58. Rogers W, Thulasi Seetha S, Refaee TAG, Lieverse RIY, Granzier RWY, Ibrahim A, et al. Radiomics: from qualitative to quantitative imaging. Br J Radiol [Review]. 2020;93(1108):20190948.

    PubMed  PubMed Central  Google Scholar 

  59. Peng A, Dai H, Duan H, Chen Y, Huang J, Zhou L, et al. A machine learning model to precisely immunohistochemically classify pituitary adenoma subtypes with radiomics based on preoperative magnetic resonance imaging. Eur J Radiol. 2020;125:108892.

    PubMed  Google Scholar 

  60. Mokrane FZ, Lu L, Vavasseur A, Otal P, Peron JM, Luk L, et al. Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules. Eur Radiol. 2020;30(1):558–70.

    PubMed  Google Scholar 

  61. Haider SP, Mahajan A, Zeevi T, Baumeister P, Reichel C, Sharaf K, et al. PET/CT radiomics signature of human papilloma virus association in oropharyngeal squamous cell carcinoma. Eur J Nucl Med Mol Imaging. 2020;47(13):2978–91.

    PubMed  Google Scholar 

  62. Varghese B, Chen F, Hwang D, Palmer SL, De Castro Abreu AL, Ukimura O, et al. Objective risk stratification of prostate cancer using machine learning and radiomics applied to multiparametric magnetic resonance images. Sci Rep [Research Support, NIH, Extramural Research Support, US Gov’t, Non-PHS Research Support, Non-US Gov’t]. 2019;9(1):1570.

    PubMed  Google Scholar 

  63. Oyama A, Hiraoka Y, Obayashi I, Saikawa Y, Furui S, Shiraishi K, et al. Hepatic tumor classification using texture and topology analysis of non-contrast-enhanced three-dimensional T1-weighted MR images with a radiomics approach. Sci Rep [Research Support, Non-US Gov’t]. 2019;9(1):8764.

    PubMed  Google Scholar 

  64. Sun R, Limkin EJ, Vakalopoulou M, Dercle L, Champiat S, Han SR, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol [Research Support, Non-US Gov’t]. 2018;19(9):1180–91.

    CAS  PubMed  Google Scholar 

  65. Oakden-Rayner L, Carneiro G, Bessen T, Nascimento JC, Bradley AP, Palmer LJ. Precision radiology: predicting longevity using feature engineering and deep learning methods in a radiomics framework. Sci Rep. 2017;7(1):1648.

    PubMed  PubMed Central  Google Scholar 

  66. Stone JR, Wilde EA, Taylor BA, Tate DF, Levin H, Bigler ED, et al. Supervised learning technique for the automated identification of white matter hyperintensities in traumatic brain injury. Brain Inj. 2016;30(12):1458–68.

    PubMed  Google Scholar 

  67. Aerts H. Data science in radiology: a path forward. Clin Cancer Res [Letter Research Support, NIH, Extramural]. 2018;24(3):532–4.

    PubMed  Google Scholar 

  68. Vukicevic AM, Milic V, Zabotti A, Hocevar A, De Lucia O, Filippou G, et al. Radiomics-based assessment of primary Sjogren’s syndrome from salivary gland ultrasonography images. IEEE J Biomed Health Inform. 2020;24(3):835–43.

    PubMed  Google Scholar 

  69. Berenguer R, Pastor-Juan MDR, Canales-Vazquez J, Castro-Garcia M, Villas MV, Mansilla Legorburo F, et al. Radiomics of CT features may be nonreproducible and redundant: influence of CT acquisition parameters. Radiology. 2018;288(2):407–15.

    PubMed  Google Scholar 

  70. Zwanenburg A, Vallieres M, Abdalah MA, Aerts H, Andrearczyk V, Apte A, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology. 2020;295(2):328–38.

    PubMed  Google Scholar 

  71. Nardone V, Reginelli A, Guida C, Belfiore MP, Biondi M, Mormile M, et al. Delta-radiomics increases multicentre reproducibility: a phantom study. Med Oncol. 2020;37(5):38.

    PubMed  Google Scholar 

  72. Zhovannik I, Bussink J, Traverso A, Shi Z, Kalendralis P, Wee L, et al. Learning from scanners: bias reduction and feature correction in radiomics. Clin Transl Radiat Oncol. 2019;19:33–8.

    PubMed  PubMed Central  Google Scholar 

  73. Saeedi E, Dezhkam A, Beigi J, Rastegar S, Yousefi Z, Mehdipour LA, et al. Radiomic feature robustness and reproducibility in quantitative bone radiography: a study on radiologic parameter changes. J Clin Densitom. 2019;22(2):203–13.

    PubMed  Google Scholar 

  74. Orlhac F, Frouin F, Nioche C, Ayache N, Buvat I. Validation of a method to compensate multicenter effects affecting CT Radiomics. Radiology [Multicenter Study Validation Study]. 2019;291(1):53–9.

    PubMed  Google Scholar 

  75. Kalendralis P, Traverso A, Shi Z, Zhovannik I, Monshouwer R, Starmans MPA, et al. Multicenter CT phantoms public dataset for radiomics reproducibility tests. Med Phys. 2019;46(3):1512–8.

    PubMed  Google Scholar 

  76. Baessler B, Weiss K, Pinto Dos Santos D. Robustness and reproducibility of radiomics in magnetic resonance imaging: a phantom study. Investig Radiol. 2019;54(4):221–8.

    Google Scholar 

  77. Shofty B, Artzi M, Shtrozberg S, Fanizzi C, DiMeco F, Haim O, et al. Virtual biopsy using MRI radiomics for prediction of BRAF status in melanoma brain metastasis. Sci Rep. 2020;10(1):6623.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Huang CY, Lee CC, Yang HC, Lin CJ, Wu HM, Chung WY, et al. Radiomics as prognostic factor in brain metastases treated with gamma knife radiosurgery. J Neuro-Oncol. 2020;146(3):439–49.

    CAS  Google Scholar 

  79. Wu G, Chen Y, Wang Y, Yu J, Lv X, Ju X, et al. Sparse representation-based radiomics for the diagnosis of brain tumors. IEEE Trans Med Imaging. 2018;37(4):893–905.

    PubMed  Google Scholar 

  80. Peng L, Parekh V, Huang P, Lin DD, Sheikh K, Baker B, et al. Distinguishing true progression from radionecrosis after stereotactic radiation therapy for brain metastases with machine learning and radiomics. Int J Radiat Oncol Biol Phys. 2018;102(4):1236–43.

    PubMed  PubMed Central  Google Scholar 

  81. Kang D, Park JE, Kim YH, Kim JH, Oh JY, Kim J, et al. Diffusion radiomics as a diagnostic model for atypical manifestation of primary central nervous system lymphoma: development and multicenter external validation. Neuro-Oncology. 2018;20(9):1251–61.

    PubMed  PubMed Central  Google Scholar 

  82. Yu H, Meng X, Chen H, Han X, Fan J, Gao W, et al. Correlation between mammographic radiomics features and the level of tumor-infiltrating lymphocytes in patients with triple-negative breast cancer. Front Oncol. 2020;10:412.

    PubMed  PubMed Central  Google Scholar 

  83. Park KJ, Lee JL, Yoon SK, Heo C, Park BW, Kim JK. Radiomics-based prediction model for outcomes of PD-1/PD-L1 immunotherapy in metastatic urothelial carcinoma. Eur Radiol. 2020;30(10):5392–403.

    CAS  PubMed  Google Scholar 

  84. Mu W, Tunali I, Gray JE, Qi J, Schabath MB, Gillies RJ. Radiomics of (18)F-FDG PET/CT images predicts clinical benefit of advanced NSCLC patients to checkpoint blockade immunotherapy. Eur J Nucl Med Mol Imaging. 2020;47(5):1168–82.

    CAS  PubMed  Google Scholar 

  85. Hectors SJ, Lewis S, Besa C, King MJ, Said D, Putra J, et al. MRI radiomics features predict immuno-oncological characteristics of hepatocellular carcinoma. Eur Radiol. 2020;30(7):3759–69.

    PubMed  PubMed Central  Google Scholar 

  86. Avanzo M, Stancanello J, Pirrone G, Sartor G. Radiomics and deep learning in lung cancer. Strahlenther Onkol [Review]. 2020;196(10):879–87.

    PubMed  Google Scholar 

  87. Tang C, Hobbs B, Amer A, Li X, Behrens C, Canales JR, et al. Development of an immune-pathology informed radiomics model for non-small cell lung cancer. Sci Rep. 2018;8(1):1922.

    PubMed  PubMed Central  Google Scholar 

  88. Ninatti G, Kirienko M, Neri E, Sollini M, Chiti A. Imaging-based prediction of molecular therapy targets in NSCLC by radiogenomics and AI approaches: a systematic review. Diagnostics (Basel) [Review]. 2020;10(6):359.

    Google Scholar 

  89. Wang X, Zhang L, Yang X, Tang L, Zhao J, Chen G, et al. Deep learning combined with radiomics may optimize the prediction in differentiating high-grade lung adenocarcinomas in ground glass opacity lesions on CT scans. Eur J Radiol. 2020;129:109150.

    PubMed  Google Scholar 

  90. Kakileti ST, Madhu HJ, Manjunath G, Wee L, Dekker A, Sampangi S. Personalized risk prediction for breast cancer pre-screening using artificial intelligence and thermal radiomics. Artif Intell Med. 2020;105:101854.

    PubMed  Google Scholar 

  91. Wang K, Qiao Z, Zhao X, Li X, Wang X, Wu T, et al. Individualized discrimination of tumor recurrence from radiation necrosis in glioma patients using an integrated radiomics-based model. Eur J Nucl Med Mol Imaging. 2020;47(6):1400–11.

    CAS  PubMed  Google Scholar 

  92. Currie G, Hawk KE, Rohren E, Vial A, Klein R. Machine learning and deep learning in medical imaging: intelligent imaging. J Med Imaging Radiat Sci. 2019;50(4):477–87.

    PubMed  Google Scholar 

  93. Sheth D, Giger ML. Artificial intelligence in the interpretation of breast cancer on MRI. J Magn Reson Imaging [Review]. 2020;51(5):1310–24.

    PubMed  Google Scholar 

  94. Castiglioni I, Gallivanone F, Soda P, Avanzo M, Stancanello J, Aiello M, et al. AI-based applications in hybrid imaging: how to build smart and truly multi-parametric decision models for radiomics. Eur J Nucl Med Mol Imaging. 2019;46(13):2673–99.

    PubMed  Google Scholar 

  95. Veit-Haibach P, Buvat I, Herrmann K. EJNMMI supplement: bringing AI and radiomics to nuclear medicine. Eur J Nucl Med Mol Imaging [Editorial]. 2019;46(13):2627–9.

    PubMed  Google Scholar 

  96. Bejnordi BE, Litjens G, van der Laak JA. Machine learning compared with pathologist assessment-reply. JAMA [Letter Comment]. 2018;319(16):1726.

    PubMed  Google Scholar 

  97. Eder L, Li Q, Rahmati S, Rahman P, Jurisica I, Chandran V. Defining imaging subphenotypes of psoriatic arthritis: integrative analysis of imaging data and gene expression in a PsA patient cohort. Rheumatology (Oxford). 2022: keac078.

    Google Scholar 

  98. Viswanath SE, Tiwari P, Lee G, Madabhushi A. Dimensionality reduction-based fusion approaches for imaging and non-imaging biomedical data: concepts, workflow, and use-cases. BMC Med Imaging [Research Support, Non-US Gov’t Research Support, NIH, Extramural Research Support, US Gov’t, Non-PHS]. 2017;17(1):2.

    PubMed  Google Scholar 

  99. Joaquim HPG, Costa AC, Talib LL, Dethloff F, Serpa MH, Zanetti MV, et al. Plasma metabolite profiles in first episode psychosis: exploring symptoms heterogeneity/severity in schizophrenia and bipolar disorder cohorts. Front Psych. 2020;11:496.

    Google Scholar 

  100. Lee E, Choi JS, Kim M, Suk HI. Toward an interpretable Alzheimer’s disease diagnostic model with regional abnormality representation via deep learning. Neuroimage [Research Support, Non-US Gov’t]. 2019;202:116113.

    PubMed  Google Scholar 

  101. Hamelin L, Lagarde J, Dorothee G, Leroy C, Labit M, Comley RA, et al. Early and protective microglial activation in Alzheimer’s disease: a prospective study using 18F-DPA-714 PET imaging. Brain [Research Support, Non-US Gov’t]. 2016;139(Pt 4):1252–64.

    PubMed  Google Scholar 

  102. Scheltens P. Imaging in Alzheimer’s disease. Dialogues Clin Neurosci [Review]. 2009;11(2):191–9.

    PubMed  Google Scholar 

  103. Magnin B, Mesrob L, Kinkingnehun S, Pelegrini-Issac M, Colliot O, Sarazin M, et al. Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI. Neuroradiology. 2009;51(2):73–83.

    PubMed  Google Scholar 

  104. Gauthier S, Dubois B, Feldman H, Scheltens P. Revised research diagnostic criteria for Alzheimer’s disease. Lancet Neurol [Comment Letter]. 2008;7(8):668–70.

    PubMed  Google Scholar 

  105. Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol [Research Support, Non-US Gov’t Review]. 2007;6(8):734–46.

    PubMed  Google Scholar 

  106. Claus JJ, Dubois EA, Booij J, Habraken J, de Munck JC, van Herk M, et al. Demonstration of a reduction in muscarinic receptor binding in early Alzheimer’s disease using iodine-123 dexetimide single-photon emission tomography. Eur J Nucl Med. 1997;24(6):602–8.

    CAS  PubMed  Google Scholar 

  107. Deweer B, Lehericy S, Pillon B, Baulac M, Chiras J, Marsault C, et al. Memory disorders in probable Alzheimer’s disease: the role of hippocampal atrophy as shown with MRI. J Neurol Neurosurg Psychiatry [Research Support, Non-US Gov’t]. 1995;58(5):590–7.

    CAS  PubMed  Google Scholar 

  108. Blin J, Baron JC, Dubois B, Crouzel C, Fiorelli M, Attar-Levy D, et al. Loss of brain 5-HT2 receptors in Alzheimer’s disease. In vivo assessment with positron emission tomography and [18F]setoperone. Brain. 1993;116(Pt 3):497–510.

    PubMed  Google Scholar 

  109. Rossini PM, Di Iorio R, Vecchio F, Anfossi M, Babiloni C, Bozzali M, et al. Early diagnosis of Alzheimer’s disease: the role of biomarkers including advanced EEG signal analysis. Report from the IFCN-sponsored panel of experts. Clin Neurophysiol [Review]. 2020;131(6):1287–310.

    CAS  PubMed  Google Scholar 

  110. Ludwig N, Fehlmann T, Kern F, Gogol M, Maetzler W, Deutscher S, et al. Machine learning to detect Alzheimer’s disease from circulating non-coding RNAs. Genom Proteom Bioinform [Research Support, Non-US Gov’t]. 2019;17(4):430–40.

    CAS  Google Scholar 

  111. McKeever PM, Schneider R, Taghdiri F, Weichert A, Multani N, Brown RA, et al. MicroRNA expression levels are altered in the cerebrospinal fluid of patients with young-onset Alzheimer’s disease. Mol Neurobiol. 2018 Dec;55(12):8826–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Matias-Guiu JA, Cabrera-Martin MN, Curiel RE, Valles-Salgado M, Rognoni T, Moreno-Ramos T, et al. Comparison between FCSRT and LASSI-L to detect early stage Alzheimer’s disease. J Alzheimers Dis. 2018;61(1):103–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Bechard LE, Beaton D, McGilton K, Tartaglia MC, Black S. Physical activity perceptions, experiences, and beliefs of older adults with mild cognitive impairment or Alzheimer’s disease and their care partners. Appl Physiol Nutr Metab. 2020;45(11):1216–24.

    PubMed  Google Scholar 

  114. Ettore E, Bakardjian H, Sole M, Levy Nogueira M, Habert MO, Gabelle A, et al. Relationships between objectives sleep parameters and brain amyloid load in subjects at risk for Alzheimer’s disease: the INSIGHT-preAD study. Sleep [Research Support, Non-US Gov’t]. 2019;42(9):zsz137.

    PubMed  Google Scholar 

  115. Ortner M, Drost R, Hedderich D, Goldhardt O, Muller-Sarnowski F, Diehl-Schmid J, et al. Amyloid PET, FDG-PET or MRI?—the power of different imaging biomarkers to detect progression of early Alzheimer’s disease. BMC Neurol. 2019;19(1):264.

    PubMed  PubMed Central  Google Scholar 

  116. Oliveira PP Jr, Nitrini R, Busatto G, Buchpiguel C, Sato JR, Amaro E Jr. Use of SVM methods with surface-based cortical and volumetric subcortical measurements to detect Alzheimer’s disease. J Alzheimers Dis. 2010;19(4):1263–72.

    PubMed  Google Scholar 

  117. Ebrahimighahnavieh MA, Luo S, Chiong R. Deep learning to detect Alzheimer’s disease from neuroimaging: a systematic literature review. Comput Methods Prog Biomed. 2020;187:105242.

    Google Scholar 

  118. Sabri O, Sabbagh MN, Seibyl J, Barthel H, Akatsu H, Ouchi Y, et al. Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer’s disease: phase 3 study. Alzheimers Dement. [Clinical Trial, Phase III Multicenter Study Research Support, Non-U.S. Gov’t]. 2015;11(8):964–74.

    PubMed  Google Scholar 

  119. Jain G, Stuendl A, Rao P, Berulava T, Pena Centeno T, Kaurani L, et al. A combined miRNA-piRNA signature to detect Alzheimer’s disease. Transl Psychiatry [Multicenter Study Research Support, Non-US Gov’t]. 2019;9(1):250.

    PubMed  Google Scholar 

  120. Lannfelt L. Biochemical diagnostic markers to detect early Alzheimer’s disease. Neurobiol Aging [Review]. 1998;19(2):165–7.

    CAS  PubMed  Google Scholar 

  121. Hampel H, Toschi N, Baldacci F, Zetterberg H, Blennow K, Kilimann I, et al. Alzheimer’s disease biomarker-guided diagnostic workflow using the added value of six combined cerebrospinal fluid candidates: Abeta1–42, total-tau, phosphorylated-tau, NFL, neurogranin, and YKL-40. Alzheimers Dement [Multicenter Study Research Support, Non-U.S. Gov’t]. 2018;14(4):492–501.

    PubMed  Google Scholar 

  122. Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC, et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Abeta, tau, immunity and lipid processing. Nat Genet [Meta-Analysis Research Support, Non-US Gov’t]. 2019;51(3):414–30.

    CAS  PubMed  Google Scholar 

  123. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet [Meta-Analysis Research Support, NIH, Extramural Research Support, Non-US Gov’t]. 2013;45(12):1452–8.

    CAS  PubMed  Google Scholar 

  124. Thijssen EH, La Joie R, Wolf A, Strom A, Wang P, Iaccarino L, et al. Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration. Nat Med [Research Support, NIH, Extramural Research Support, Non-US Gov’t]. 2020;26(3):387–97.

    CAS  PubMed  Google Scholar 

  125. Edwards M, Balldin VH, Hall J, O’Bryant S. Combining select neuropsychological assessment with blood-based biomarkers to detect mild Alzheimer’s disease: a molecular neuropsychology approach. J Alzheimers Dis [Research Support, NIH, Extramural]. 2014;42(2):635–40.

    CAS  PubMed  Google Scholar 

  126. Xicota L, Ichou F, Lejeune FX, Colsch B, Tenenhaus A, Leroy I, et al. Multi-omics signature of brain amyloid deposition in asymptomatic individuals at-risk for Alzheimer’s disease: the INSIGHT-preAD study. EBioMedicine. 2019;47:518–28.

    PubMed  PubMed Central  Google Scholar 

  127. Leung CK, Braun P, Cuzzocrea A. AI-based sensor information fusion for supporting deep supervised learning. Sensors (Basel). 2019;19(6):1345.

    PubMed  Google Scholar 

  128. Zizzo AN, Erdman L, Feldman BM, Goldenberg A. Similarity network fusion: a novel application to making clinical diagnoses. Rheum Dis Clin North Am [Review]. 2018;44(2):285–93.

    PubMed  Google Scholar 

  129. Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M, et al. Similarity network fusion for aggregating data types on a genomic scale. Nat Methods [Research Support, Non-US Gov’t Research Support, US Gov’t, Non-PHS]. 2014;11(3):333–7.

    CAS  PubMed  Google Scholar 

  130. Kennedy SA, Jarboui MA, Srihari S, Raso C, Bryan K, Dernayka L, et al. Extensive rewiring of the EGFR network in colorectal cancer cells expressing transforming levels of KRAS(G13D). Nat Commun [Research Support, Non-U.S. Gov’t]. 2020;11(1):499.

    CAS  PubMed  Google Scholar 

  131. Enfield KSS, Marshall EA, Anderson C, Ng KW, Rahmati S, Xu Z, et al. Epithelial tumor suppressor ELF3 is a lineage-specific amplified oncogene in lung adenocarcinoma. Nat Commun [Research Support, Non-US Gov’t]. 2019;10(1):5438.

    PubMed  Google Scholar 

  132. Tokar T, Pastrello C, Ramnarine VR, Zhu CQ, Craddock KJ, Pikor LA, et al. Differentially expressed microRNAs in lung adenocarcinoma invert effects of copy number aberrations of prognostic genes. Oncotarget. 2018;9(10):9137–55.

    PubMed  PubMed Central  Google Scholar 

  133. Martinez VD, Vucic EA, Thu KL, Pikor LA, Lam S, Lam WL. Disruption of KEAP1/CUL3/RBX1 E3-ubiquitin ligase complex components by multiple genetic mechanisms: association with poor prognosis in head and neck cancer. Head Neck [Research Support, NIH, Extramural Research Support, Non-US Gov’t]. 2015;37(5):727–34.

    PubMed  Google Scholar 

  134. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 2014;511(7511):543–50.

    Google Scholar 

  135. Shirdel EA, Xie W, Mak TW, Jurisica I. NAViGaTing the micronome—using multiple microRNA prediction databases to identify signalling pathway-associated microRNAs. PLoS One [Comparative Study Evaluation Studies Research Support, Non-US Gov’t]. 2011;6(2):e17429.

    CAS  PubMed  Google Scholar 

  136. Brown KR, Jurisica I. Unequal evolutionary conservation of human protein interactions in interologous networks. Genome Biol. 2007;8(5):R95.

    PubMed  PubMed Central  Google Scholar 

  137. Brown KR, Otasek D, Ali M, McGuffin MJ, Xie W, Devani B, et al. NAViGaTOR: network analysis, visualization and graphing Toronto. Bioinformatics. 2009;25(24):3327–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Bhattacharyya R, Ha MJ, Liu Q, Akbani R, Liang H, Baladandayuthapani V. Personalized network modeling of the pan-cancer patient and cell line interactome. JCO Clin Cancer Inform. 2020;4:399–411.

    PubMed  Google Scholar 

  139. Ingalhalikar M, Smith A, Parker D, Satterthwaite TD, Elliott MA, Ruparel K, et al. Sex differences in the structural connectome of the human brain. Proc Natl Acad Sci U S A [Comparative Study Research Support, NIH, Extramural Research Support, Non-US Gov’t]. 2014;111(2):823–8.

    CAS  PubMed  Google Scholar 

  140. Bigler ED. Default mode network, connectivity, traumatic brain injury and post-traumatic amnesia. Brain [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S. Comment]. 2016;139(Pt 12):3054–7.

    PubMed  Google Scholar 

  141. Bigler ED, Abildskov TJ, Goodrich-Hunsaker NJ, Black G, Christensen ZP, Huff T, et al. Structural neuroimaging findings in mild traumatic brain injury. Sports Med Arthrosc Rev [Review]. 2016;24(3):e42–52.

    PubMed  Google Scholar 

  142. Cui LB, Liu L, Wang HN, Wang LX, Guo F, Xi YB, et al. Disease definition for schizophrenia by functional connectivity using radiomics strategy. Schizophr Bull. 2018;44(5):1053–9.

    PubMed  PubMed Central  Google Scholar 

  143. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: simple building blocks of complex networks. Science. 2002;298:824–7.

    CAS  PubMed  Google Scholar 

  144. Shen-Orr SS, Milo R, Mangan S, Alon U. Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet. 2002;31(1):64–8.

    CAS  PubMed  Google Scholar 

  145. Mangan S, Alon U. Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci U S A. 2003;100(21):11980–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Alon U. Network motifs: theory and experimental approaches. Nat Rev Genet. 2007;8(6):450–61.

    CAS  PubMed  Google Scholar 

  147. Milenkovic T, Lai J, Przulj N. GraphCrunch: a tool for large network analyses. BMC Bioinform. 2008;9:70.

    Google Scholar 

  148. Geraci J, Liu G, Jurisica I. Algorithms for systematic identification of small subgraphs. Methods Mol Biol [Research Support, Non-US Gov’t]. 2012;804:219–44.

    CAS  PubMed  Google Scholar 

  149. Przulj N, Wigle DA, Jurisica I. Functional topology in a network of protein interactions. Bioinformatics. 2004;20(3):340–8.

    CAS  PubMed  Google Scholar 

  150. Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, et al. High-throughput mapping of a dynamic signaling network in mammalian cells. Science. 2005;307(5715):1621–5.

    CAS  PubMed  Google Scholar 

  151. Zhang X, Gao P, Snyder MP. The Exposome in the era of the quantified self. Annu Rev Biomed Data Sci. 2021;4:255–77.

    Google Scholar 

  152. Kotlyar M, Pastrello C, Malik Z, Jurisica I. IID 2018 update: context-specific physical protein-protein interactions in human, model organisms and domesticated species. Nucleic Acids Res. 2019;47(D1):D581–9.

    CAS  PubMed  Google Scholar 

  153. McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for breast cancer screening. Nature [Evaluation Study Research Support, NIH, Extramural]. 2020;577(7788):89–94.

    CAS  PubMed  Google Scholar 

  154. Rich E, Lewis S, Lupton D, Miah A, Piwek L. Digital health generation?: young People’s use of ‘healthy lifestyle. Technologies. Bath: University of Bath; 2020.

    Google Scholar 

  155. Cilliers L. Wearable devices in healthcare: privacy and information security issues. Health Inf Manag. 2020;49(2–3):150–6.

    PubMed  Google Scholar 

  156. Rejeski WJ, Brawley LR, Ettinger W, Morgan T, Thompson C. Compliance to exercise therapy in older participants with knee osteoarthritis: implications for treating disability. Med Sci Sports Exerc [Clinical Trial Randomized Controlled Trial]. 1997;29(8):977–85.

    CAS  PubMed  Google Scholar 

  157. Bonato P. Advances in wearable technology for rehabilitation. Stud Health Technol Inform. 2009;145:145–59.

    PubMed  Google Scholar 

  158. Shallwani S, Dalzell MA, Sateren W, O’Brien S. Exercise compliance among patients with multiple myeloma undergoing chemotherapy: a retrospective study. Supportive Care Cancer. 2015;23(10):3081–8.

    Google Scholar 

  159. Davies NJ, Batehup L, Thomas R. The role of diet and physical activity in breast, colorectal, and prostate cancer survivorship: a review of the literature. Br J Cancer [Research Support, Non-US Gov’t Review]. 2011;105(Suppl 1):S52–73.

    PubMed  Google Scholar 

  160. Norman A, Moradi T, Gridley G, Dosemeci M, Rydh B, Nyren O, et al. Occupational physical activity and risk for prostate cancer in a nationwide cohort study in Sweden. Br J Cancer. 2002;86(1):70–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Wannamethee SG, Shaper AG, Walker M. Physical activity and risk of cancer in middle-aged men. Br J Cancer. 2001;85(9):1311–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Abioye AI, Odesanya MO, Ibrahim NA. Physical activity and risk of gastric cancer: a meta-analysis of observational studies. Br J Sports Med. 2015;49(4):224–9.

    PubMed  Google Scholar 

  163. Contrepois K, Wu S, Moneghetti KJ, Hornburg D, Ahadi S, Tsai MS, et al. Molecular choreography of acute exercise. Cell. 2020;181(5):1112–30 e16.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. McTiernan A, Stanford JL, Weiss NS, Daling JR, Voigt LF. Occurrence of breast cancer in relation to recreational exercise in women age 50–64 years. Epidemiology [Research Support, Non-US Gov’t Research Support, US Gov’t, PHS]. 1996;7(6):598–604.

    CAS  PubMed  Google Scholar 

  165. Goh J, Kirk EA, Lee SX, Ladiges WC. Exercise, physical activity and breast cancer: the role of tumor-associated macrophages. Exerc Immunol Rev [Review]. 2012;18:158–76.

    PubMed  Google Scholar 

  166. Basen-Engquist K, Carmack C, Brown J, Jhingran A, Baum G, Song J, et al. Response to an exercise intervention after endometrial cancer: differences between obese and non-obese survivors. Gynecol Oncol [Comparative Study Observational Study Research Support, NIH, Extramural Research Support, Non-US Gov’t]. 2014;133(1):48–55.

    CAS  PubMed  Google Scholar 

  167. Cannioto RA, Moysich KB. Epithelial ovarian cancer and recreational physical activity: a review of the epidemiological literature and implications for exercise prescription. Gynecol Oncol Rev. 2015;137(3):559–73.

    Google Scholar 

  168. Spector D, Deal AM, Amos KD, Yang H, Battaglini CL. A pilot study of a home-based motivational exercise program for African American breast cancer survivors: clinical and quality-of-life outcomes. Integr Cancer Ther [Research Support, NIH, Extramural]. 2014;13(2):121–32.

    PubMed  Google Scholar 

  169. Gil-Rey E, Quevedo-Jerez K, Maldonado-Martin S, Herrero-Roman F. Exercise intensity guidelines for cancer survivors: a comparison with reference values. Int J Sports Med. 2014;35(14):e1–9.

    CAS  PubMed  Google Scholar 

  170. Irwin ML, McTiernan A, Baumgartner RN, Baumgartner KB, Bernstein L, Gilliland FD, et al. Changes in body fat and weight after a breast cancer diagnosis: influence of demographic, prognostic, and lifestyle factors. J Clin Oncol. 2005;23(4):774–82.

    PubMed  Google Scholar 

  171. Granger CL, McDonald CF, Berney S, Chao C, Denehy L. Exercise intervention to improve exercise capacity and health related quality of life for patients with non-small cell lung cancer: a systematic review. Lung Cancer [Review]. 2011;72(2):139–53.

    CAS  PubMed  Google Scholar 

  172. Pettapiece-Phillips R, Narod SA, Kotsopoulos J. The role of body size and physical activity on the risk of breast cancer in BRCA mutation carriers. Cancer Causes Control. 2015;26(3):333–44.

    PubMed  Google Scholar 

  173. Friedenreich CM, McGregor SE, Courneya KS, Angyalfi SJ, Elliott FG. Case-control study of lifetime total physical activity and prostate cancer risk. Am J Epidemiol. 2004;159(8):740–9.

    CAS  PubMed  Google Scholar 

  174. Buffart LM, Galvao DA, Chinapaw MJ, Brug J, Taaffe DR, Spry N, et al. Mediators of the resistance and aerobic exercise intervention effect on physical and general health in men undergoing androgen deprivation therapy for prostate cancer. Cancer [Randomized Controlled Trial Research Support, Non-US Gov’t]. 2014;120(2):294–301.

    PubMed  Google Scholar 

  175. Moore SC, Peters TM, Ahn J, Park Y, Schatzkin A, Albanes D, et al. Age-specific physical activity and prostate cancer risk among white men and black men. Cancer [Research Support, NIH, Extramural]. 2009;115(21):5060–70.

    PubMed  Google Scholar 

  176. Singh AA, Jones LW, Antonelli JA, Gerber L, Calloway EE, Shuler KH, et al. Association between exercise and primary incidence of prostate cancer: does race matter? Cancer. 2013;119(7):1338–43.

    PubMed  Google Scholar 

  177. Magbanua MJ, Richman EL, Sosa EV, Jones LW, Simko J, Shinohara K, et al. Physical activity and prostate gene expression in men with low-risk prostate cancer. Cancer Causes Control [Research Support, NIH, Extramural Research Support, Non-US Gov’t]. 2014;25(4):515–23.

    PubMed  Google Scholar 

  178. Richman EL, Kenfield SA, Stampfer MJ, Paciorek A, Carroll PR, Chan JM. Physical activity after diagnosis and risk of prostate cancer progression: data from the cancer of the prostate strategic urologic research endeavor. Cancer Res. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. 2011;71(11):3889–95.

    CAS  PubMed  Google Scholar 

  179. Sprod LK, Palesh OG, Janelsins MC, Peppone LJ, Heckler CE, Adams MJ, et al. Exercise, sleep quality, and mediators of sleep in breast and prostate cancer patients receiving radiation therapy. Community Oncol. 2010;7(10):463–71.

    PubMed  PubMed Central  Google Scholar 

  180. Galvao DA, Taaffe DR, Spry N, Joseph D, Newton RU. Combined resistance and aerobic exercise program reverses muscle loss in men undergoing androgen suppression therapy for prostate cancer without bone metastases: a randomized controlled trial. J Clin Oncol. 2010;28(2):340–7.

    CAS  PubMed  Google Scholar 

  181. Lakoski SG, Willis BL, Barlow CE, et al. Midlife cardiorespiratory fitness, incident cancer, and survival after cancer in men: the cooper center longitudinal study. JAMA Oncol. 2015;1(2):231–7.

    PubMed  PubMed Central  Google Scholar 

  182. Santa Mina D, Alibhai SM, Matthew AG, Guglietti CL, Pirbaglou M, Trachtenberg J, et al. A randomized trial of aerobic versus resistance exercise in prostate cancer survivors. J Aging Phys Act. 2013;21(4):455–78.

    PubMed  Google Scholar 

  183. Demark-Wahnefried W, Clipp EC, Lipkus IM, Lobach D, Snyder DC, Sloane R, et al. Main outcomes of the FRESH START trial: a sequentially tailored, diet and exercise mailed print intervention among breast and prostate cancer survivors. J Clin Oncol [Clinical Trial, Phase II Multicenter Study Randomized Controlled Trial Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 2007;25(19):2709–18.

    PubMed  Google Scholar 

  184. Gardner JR, Livingston PM, Fraser SF. Effects of exercise on treatment-related adverse effects for patients with prostate cancer receiving androgen-deprivation therapy: a systematic review. J Clin Oncol Review. 2014;32(4):335–46.

    Google Scholar 

  185. Parsons JK. Prostate cancer and the therapeutic benefits of structured exercise. J Clin Oncol [Comment Editorial]. 2014;32(4):271–2.

    PubMed  Google Scholar 

  186. Winters-Stone KM, Beer TM. Review of exercise studies in prostate cancer survivors receiving androgen deprivation therapy calls for an aggressive research agenda to generate high-quality evidence and guidance for exercise as standard of care. J Clin Oncol [Comment Letter]. 2014;32(23):2518–9.

    PubMed  Google Scholar 

  187. Mennen-Winchell LJ, Grigoriev V, Alpert P, Dos Santos H, Tonstad S. Self-reported exercise and bone mineral density in prostate cancer patients receiving androgen deprivation therapy. J Am Assoc Nurse Pract [Research Support, Non-US Gov’t]. 2014;26(1):40–8.

    PubMed  Google Scholar 

  188. Antonelli JA, Jones LW, Banez LL, Thomas JA, Anderson K, Taylor LA, et al. Exercise and prostate cancer risk in a cohort of veterans undergoing prostate needle biopsy. J Urol [Research Support, Non-US Gov’t]. 2009;182(5):2226–31.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Jurisica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jurisica, I. (2022). Integrative Computational Biology, AI, and Radiomics: Building Explainable Models by Integration of Imaging, Omics, and Clinical Data. In: Veit-Haibach, P., Herrmann, K. (eds) Artificial Intelligence/Machine Learning in Nuclear Medicine and Hybrid Imaging. Springer, Cham. https://doi.org/10.1007/978-3-031-00119-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-00119-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-00118-5

  • Online ISBN: 978-3-031-00119-2

  • eBook Packages: MedicineMedicine (R0)