Skip to main content

Childhood Neoplasms and Impact on Hormones

  • Chapter
  • First Online:
Pituitary Disorders throughout the Life Cycle

Abstract

Advances in cancer treatment have led to a continuous improvement on childhood cancer outcomes, while the annual incidence has had a steady increase. Consequently, the number of survivors has continued to grow. The majority of these patients will face endocrine effects related to the diagnosis and therapy. We review the endocrinopathies resulting from childhood cancer and its treatments, including the considerations needed for their adequate diagnosis, and management. Finally, we point to current gaps in knowledge related to the adoption of novel therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Howlader N, Noone A, Krapcho M, et al. SEER cancer statistics review, 1975–2017. Bethesda: National Cancer Institute; 2020.

    Google Scholar 

  2. Robison LL, Hudson MM. Survivors of childhood and adolescent cancer: life-long risks and responsibilities. Nat Rev Cancer. 2014;14:61–70.

    Article  CAS  Google Scholar 

  3. Brignardello E, Felicetti F, Castiglione A, Chiabotto P, Corrias A, Fagioli F, Ciccone G, Boccuzzi G. Endocrine health conditions in adult survivors of childhood cancer: the need for specialized adult-focused follow-up clinics. Eur J Endocrinol. 2013;168:465–72.

    Google Scholar 

  4. Mostoufi-Moab S, Seidel K, Leisenring WM, et al. Endocrine abnormalities in aging survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2016;34:3240–7.

    Article  Google Scholar 

  5. Children’s Oncology Group. Long-term follow-up guidelines for survivors of childhood, adolescent, and young adult cancers. Monrovia, CA; 2018. http://www.survivorshipguidelines.org/. Accessed on 24 May 22.

  6. McCrea HJ, George E, Settler A, Schwartz TH, Greenfield JP. Pediatric suprasellar tumors. J Child Neurol. 2016;31:1367–76.

    Google Scholar 

  7. Daubenbüchel A, Müller H. Neuroendocrine disorders in pediatric craniopharyngioma patients. J Clin Med. 2015;4:389–413.

    Article  Google Scholar 

  8. Tan TSE, Patel L, Gopal-Kothandapani JS, et al. The neuroendocrine sequelae of paediatric craniopharyngioma: a 40-year meta-data analysis of 185 cases from three UK centres. Eur J Endocrinol. 2017;176:359–69.

    Article  CAS  Google Scholar 

  9. Van Iersel L, Li Z, Srivastava DK, et al. Hypothalamic-pituitary disorders in childhood cancer survivors: prevalence, risk factors and long-term health outcomes. J Clin Endocrinol Metab. 2019;104:6101–15.

    Article  Google Scholar 

  10. Abuzzahab MJ, Roth CL, Shoemaker AH, Jennifer Abuzzahab M, Roth CL, Shoemaker AH. Hypothalamic obesity: prologue and promise. Horm Res Paediatr. 2019;91:128–36.

    Google Scholar 

  11. Matsutani M, Sano K, Takakura K, Fujimaki T, Nakamura O, Funata N, Seto T. Primary intracranial germ cell tumors: a clinical analysis of 153 histologically verified cases. J Neurosurg. 1997;86:446–55.

    Article  CAS  Google Scholar 

  12. Bizzarri C, Bottaro G. Endocrine implications of neurofibromatosis 1 in childhood. Horm Res Paediatr. 2015;83:232–41.

    Article  CAS  Google Scholar 

  13. Kamiya K, Ozasa K, Akiba S, Niwa O, Kodama K, Takamura N, Zaharieva EK, Kimura Y, Wakeford R. Long-term effects of radiation exposure on health. Lancet. 2015;386:469–78.

    Google Scholar 

  14. Van Santen HM, Van Den Heuvel-Eibrink MM, Van De Wetering MD, Wallace WH. Hypogonadism in children with a previous history of cancer: endocrine management and follow-up. Horm Res Paediatr. 2019;91:93–103.

    Google Scholar 

  15. Yamoah K, Johnstone PAS. Proton beam therapy: clinical utility and current status in prostate cancer. Onco Targets Ther. 2016;9:5721–7.

    Article  CAS  Google Scholar 

  16. Munck af Rosenschold P, Engelholm SA, Brodin PN, Jørgensen M, Grosshans DR, Zhu RX, Palmer M, Crawford CN, Mahajan A. A retrospective evaluation of the benefit of referring pediatric cancer patients to an external proton therapy center. Pediatr Blood Cancer. 2016;63:262–9.

    Google Scholar 

  17. Stokkevåg CH, Indelicato DJ, Herfarth K, et al. Normal tissue complication probability models in plan evaluation of children with brain tumors referred to proton therapy. Acta Oncol (Madr). 2019;58:1416–22.

    Google Scholar 

  18. Viswanathan V, Pradhan K, Eugster E. Pituitary hormone dysfunction after proton beam radiation therapy in children with brain tumors. Endocr Pract. 2011;17:891–6.

    Article  Google Scholar 

  19. Bhatti P, Veiga LHS, Ronckers CM, et al. Risk of second primary thyroid cancer after radiotherapy for a childhood cancer in a large cohort study: an update from the childhood cancer survivor study. Radiat Res. 2010;174:741–52.

    Article  CAS  Google Scholar 

  20. Fard-Esfahani A, Emami-Ardekani A, Fallahi B, Fard-Esfahani P, Beiki D, Hassanzadeh-Rad A, Eftekhari M. Adverse effects of radioactive iodine-131 treatment for differentiated thyroid carcinoma. Nucl Med Commun. 2014;35:808–17.

    Google Scholar 

  21. Sawka AM, Lakra DC, Lea J, et al. A systematic review examining the effects of therapeutic radioactive iodine on ovarian function and future pregnancy in female thyroid cancer survivors. Clin Endocrinol. 2008;69:479–90.

    Article  Google Scholar 

  22. Burch WM, Posillico JT. Hypoparathyroidism after I-131 therapy with subsequent return of parathyroid function. J Clin Endocrinol Metab. 1983;57:398–401.

    Article  CAS  Google Scholar 

  23. Winslow CP, Meyers AD. Hypocalcemia as a complication of radioiodine therapy. Am J Otolaryngol – Head Neck Med Surg. 1998;19:401–3.

    Google Scholar 

  24. Gomez DL, Shulman DI. Hyperparathyroidism two years after radioactive iodine therapy in an adolescent male. Case Rep Pediatr. 2014;2014:1–3.

    Article  Google Scholar 

  25. Van Santen HM, De Kraker J, Vulsma T. Endocrine late effects from multi-modality treatment of neuroblastoma. Eur J Cancer. 2005;41:1767–74.

    Article  Google Scholar 

  26. Quach A, Ji L, Mishra V, et al. Thyroid and hepatic function after high-dose 131I-metaiodobenzylguanidine (131I-MIBG) therapy for neuroblastoma. Pediatr Blood Cancer. 2011;56:191–201.

    Article  Google Scholar 

  27. Clement SC, Kraal KCJM, Van Eck-Smit BLF, Van Den Bos C, Kremer LCM, Tytgat GAM, Van Santen HM. Primary ovarian insufficiency in children after treatment with 131I-metaiodobenzylguanidine for neuroblastoma: report of the first two cases. J Clin Endocrinol Metab. 2014;99:112–6.

    Google Scholar 

  28. Clement SC, van Rijn RR, van Eck-Smit BLF, van Trotsenburg ASP, Caron HN, Tytgat GAM, van Santen HM. Long-term efficacy of current thyroid prophylaxis and future perspectives on thyroid protection during 131I-metaiodobenzylguanidine treatment in children with neuroblastoma. Eur J Nucl Med Mol Imaging. 2015;42:706–15.

    Article  CAS  Google Scholar 

  29. Sapkota Y, Wilson CL, Zaidi AK, et al. A novel locus predicts spermatogenic recovery among childhood cancer survivors exposed to alkylating agents. Cancer Res. 2020;80:3755–64.

    Google Scholar 

  30. Brooke RJ, Im C, Wilson CL, et al. A high-risk haplotype for premature menopause in childhood cancer survivors exposed to gonadotoxic therapy. J Natl Cancer Inst. 2018;110:895–904.

    Article  Google Scholar 

  31. Green DM, Nolan VG, Goodman PJ, Whitton JA, Srivastava DK, Leisenring WM, Diller LR, Stovall M, Donaldson SS, Robison LL. The cyclophosphamide equivalent dose as an approach for quantifying alkylating agent exposure: a report from the childhood cancer survivor study. Pediatr Blood Cancer. 2014;61:53–67.

    Google Scholar 

  32. Inskip PD, Veiga LHS, Brenner AV, et al. Hypothyroidism after radiation therapy for childhood cancer: a report from the childhood cancer survivor study. Radiat Res. 2018;190:117.

    Article  CAS  Google Scholar 

  33. Zhang FF, Kelly MJ, Saltzman E, et al. Obesity in pediatric ALL survivors: a meta-analysis. Pediatrics. 2014; 133:e704-15.

    Google Scholar 

  34. Meacham LR, Sklar CA, Li S, Liu Q, Gimpel N, Yasui Y, Whitton JA, Stovall M, Robison LL, Oeffinger KC. Diabetes mellitus in long-term survivors of childhood cancer – increased risk associated with radiation therapy: a report for the childhood cancer survivor study. Arch Intern Med. 2009;169:1381–8.

    Google Scholar 

  35. Ward LM, Ma J, Lang B, et al. Bone morbidity and recovery in children with acute lymphoblastic leukemia: results of a six-year prospective cohort study. J Bone Miner Res. 2018;33:1435–43.

    Article  CAS  Google Scholar 

  36. Lebovic R, Pearce N, Lacey L, Xenakis J, Faircloth CB, Thompson P. Adverse effects of pegaspargase in pediatric patients receiving doses greater than 3,750 IU. Pediatr Blood Cancer. 2017;64:e26555.

    Article  Google Scholar 

  37. Panigrahi M, Swain T, Jena R, et al. L-asparaginase-induced abnormality in plasma glucose level in patients of acute lymphoblastic leukemia admitted to a tertiary care hospital of Odisha. Indian J Pharmacol. 2016;48:505.

    Google Scholar 

  38. Tanaka R, Osumi T, Miharu M, Ishii T, Hasegawa T, Takahashi T, Shimada H. Hypoglycemia associated with L-asparaginase in acute lymphoblastic leukemia treatment: a case report. Exp Hematol Oncol. 2012;1:8.

    Google Scholar 

  39. Wilson CL, Dilley K, Ness KK, et al. Fractures among long-term survivors of childhood cancer. Cancer. 2012;118:5920–8.

    Article  Google Scholar 

  40. Groot-Loonen JJ, Otten BJ, Vant’ Hof MA, Lippens RJJ, Stoelinga GBA. Chemotherapy plays a major role in the inhibition of catch-up growth during maintenance therapy for childhood acute lymphoblastic leukemia. Pediatrics. 1995;96:693–5.

    Google Scholar 

  41. Halonen P, Salo MK, Schmiegelow K, Mäkipernaa A. Investigation of the mechanisms of therapy-related hypoglycaemia in children with acute lymphoblastic leukaemia. Acta Paediatr Int J Paediatr. 2003;92:37–42.

    Google Scholar 

  42. Lodish MB. Kinase inhibitors: adverse effects related to the endocrine system. J Clin Endocrinol Metab. 2013;98:1333–42.

    Article  CAS  Google Scholar 

  43. Ichimura K, Nishikawa R, Matsutani M. Molecular markers in pediatric neuro-oncology. Neuro-Oncology. 2012;14:iv90–9.

    Article  CAS  Google Scholar 

  44. Chang LS, Barroso-Sousa R, Tolaney SM, Hodi FS, Kaiser UB, Min L. Endocrine toxicity of cancer immunotherapy targeting immune checkpoints. Endocr Rev. 2018;40:17–65.

    Google Scholar 

  45. Corsello SM, Barnabei A, Marchetti P, De Vecchis L, Salvatori R, Torino F. Endocrine side effects induced by immune checkpoint inhibitors. J Clin Endocrinol Metab. 2013;98:1361–75.

    Google Scholar 

  46. Byun DJ, Wolchok JD, Rosenberg LM, Girotra M. Cancer immunotherapy — immune checkpoint blockade and associated endocrinopathies. Nat Rev Endocrinol. 2017;13:195–207.

    Google Scholar 

  47. Barroso-Sousa R, Barry WT, Garrido-Castro AC, Hodi FS, Min L, Krop IE, Tolaney SM. Incidence of endocrine dysfunction following the use of different immune checkpoint inhibitor regimens. JAMA Oncol. 2018;4:173.

    Google Scholar 

  48. Davis KL, Agarwal AM, Verma AR. Checkpoint inhibition in pediatric hematologic malignancies. Pediatr Hematol Oncol. 2017;34:379–94.

    Article  CAS  Google Scholar 

  49. Lucchesi M, Sardi I, Puppo G, Chella A, Favre C. The dawn of “immune-revolution” in children: early experiences with checkpoint inhibitors in childhood malignancies. Cancer Chemother Pharmacol. 2017;80:1047–53.

    Google Scholar 

  50. Merchant MS, Wright M, Baird K, et al. Phase I clinical trial of ipilimumab in pediatric patients with advanced solid tumors. Clin Cancer Res. 2016;22:1364–70.

    Article  CAS  Google Scholar 

  51. Ho J, Lewis V, Guilcher GMT, Stephure DK, Le PD. Endocrine complications following pediatric bone marrow transplantation. J Pediatr Endocrinol Metab. 2011;24:327–32.

    Google Scholar 

  52. Nandagopal R, Laverdière C, Mulrooney D, Hudson MM, Meacham L. Endocrine late effects of childhood cancer therapy: a report from the children’s oncology group. Horm Res. 2008;69:65–74.

    Google Scholar 

  53. Schempp A, Lee J, Kearney S, Mulrooney DA, Smith AR. Iron overload in survivors of childhood cancer. J Pediatr Hematol Oncol. 2016;38:27–31.

    Google Scholar 

  54. Chotsampancharoen T, Gan K, Kasow KA, Barfield RC, Hale GA, Leung W. Iron overload in survivors of childhood leukemia after allogeneic hematopoietic stem cell transplantation. Pediatr Transplant. 2009;13:348–52.

    Google Scholar 

  55. McDermott JH, Walsh CH. Extensive clinical experience: hypogonadism in hereditary hemochromatosis. J Clin Endocrinol Metab. 2005;90:2451–5.

    Article  CAS  Google Scholar 

  56. Lawson SA, Horne VE, Golekoh MC, et al. Hypothalamic–pituitary function following childhood brain tumors: analysis of prospective annual endocrine screening. Pediatr Blood Cancer. 2019;66:e27631.

    Google Scholar 

  57. Hawkes CP, Mostoufi-Moab S, McCormack SE, et al. Sitting height to standing height ratio reference charts for children in the United States. J Pediatr. 2020;226:221-227.e15.

    Google Scholar 

  58. Wilhelmsson M, Vatanen A, Borgström B, Gustafsson B, Taskinen M, Saarinen-Pihkala UM, Winiarski J, Jahnukainen K. Adult testicular volume predicts spermatogenetic recovery after allogeneic HSCT in childhood and adolescence. Pediatr Blood Cancer. 2014;61:1094–100.

    Google Scholar 

  59. Sklar CA, Antal Z, Chemaitilly W, Cohen LE, Follin C, Meacham LR, Murad MH, Hassan Murad M, Murad MH. Hypothalamic–pituitary and growth disorders in survivors of childhood cancer: an endocrine society* clinical practice guideline. J Clin Endocrinol Metab. 2018;103:2761–84.

    Google Scholar 

  60. Weinzimer SA, Homan SA, Ferry RJ, Moshang T. Serum IGF-I and IGFBP-3 concentrations do not accurately predict growth hormone deficiency in children with brain tumours. Clin Endocrinol. 1999;51:339–45.

    Google Scholar 

  61. Raman S, Grimberg A, Waguespack SG, Miller BS, Sklar CA, Meacham LR, Patterson BC. Risk of neoplasia in pediatric patients receiving growth hormone therapy – a report from the pediatric endocrine society drug and therapeutics committee. J Clin Endocrinol Metab. 2015;100:2192–203.

    Google Scholar 

  62. Scovell JM, Khera M. Testosterone replacement therapy versus clomiphene citrate in the young hypogonadal male. Eur Urol Focus. 2018;4:321–3.

    Article  Google Scholar 

  63. Raivio T, Wikström AM, Dunkel L. Treatment of gonadotropin-deficient boys with recombinant human FSH: long-term observation and outcome. Eur J Endocrinol. 2007;156:105–11.

    Article  CAS  Google Scholar 

  64. Rohayem J, Hauffa BP, Zacharin M, et al. Testicular growth and spermatogenesis: new goals for pubertal hormone replacement in boys with hypogonadotropic hypogonadism? -a multicentre prospective study of hCG/rFSH treatment outcomes during adolescence. Clin Endocrinol. 2017;86:75–87.

    Article  CAS  Google Scholar 

  65. Green DM, Kawashima T, Stovall M, et al. Fertility of male survivors of childhood cancer: A report from the childhood cancer survivor study. J Clin Oncol. 2010;28:332–9.

    Google Scholar 

  66. Meacham LR, Burns K, Orwig KE, et al. Standardizing Risk Assessment for Treatment-Related Gonadal Insufficiency and Infertility in Childhood Adolescent and Young Adult Cancer: The Pediatric Initiative Network Risk Stratification System. J Adolesc Young Adult Oncol. 2020;9:662–66.

    Google Scholar 

  67. Crabtree NJ, Arabi A, Bachrach LK, et al. Dual-energy x-ray absorptiometry interpretation and reporting in children and adolescents: The revised 2013 ISCD pediatric official positions. J Clin Densitom. 2014;17:225–42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent E. Horne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hoyos-Martinez, A., Horne, V.E. (2022). Childhood Neoplasms and Impact on Hormones. In: Samson, S.L., Ioachimescu, A.G. (eds) Pituitary Disorders throughout the Life Cycle. Springer, Cham. https://doi.org/10.1007/978-3-030-99918-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99918-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99917-9

  • Online ISBN: 978-3-030-99918-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics