Skip to main content

Agricultural Residue-Derived Sustainable Nanoadsorbents for Wastewater Treatment

  • Chapter
  • First Online:
Recent Trends in Wastewater Treatment

Abstract

Water resources are getting contaminated globally in a very fast manner due to natural and anthropogenic practices. If this happens with such a pace, it will lead to freshwater scarcity. Therefore, economically feasible, easy to use and technically simple technologies for water treatment must be developed proactively. Adsorption technique, among the other water treatment technologies, might be favorable for the said purpose in terms of techno-economic aspects (cheap, universal, and eco-friendly). However, conventional adsorbents like clay, silica gel, activated carbon, limestone, and activated alumina have certain inherent issues which make their real-world application limited. Therefore, emerging nanoadsorbents may be employed as a replacement of conventional adsorbents in wastewater treatment. Nanoadsorbents have high surface area, porosity, and tunable characteristics. The challenges with the application of nanoadsorbents for wastewater treatment include identification of low-cost and sustainable adsorbent precursor materials. The agricultural residue-derived nanoadsorbents have a potential to deal with the above challenges. A variety of agricultural residue-derived adsorbents such as nanosilica, nanocellulose, nanobiochar and their composites have been developed and used for wastewater treatment. This chapter gives an overview of the available wastewater treatment technologies and covers the development and application of agricultural residue-derived nanoadsorbents for wastewater treatment including the concepts like operating mechanism, regeneration and selection of adsorbents. Chapter ends with the conclusions and potential recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afkhami, A., Saber-Tehrani, M. and Bagheri, H., 2010. Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2, 4-dinitrophenylhydrazine. Journal of Hazardous Materials, 181(1-3), pp. 836-844.

    Article  CAS  Google Scholar 

  • Ahamad, A., Madhav, S., Singh, A.K., Kumar, A. and Singh, P., 2020. Types of water pollutants: conventional and emerging. In Sensors in Water Pollutants Monitoring: Role of Material (pp. 21-41). Springer, Singapore.

    Chapter  Google Scholar 

  • Aksu, Z., 2005. Application of biosorption for the removal of organic pollutants: a review. Process Biochemistry, 40(3-4), pp. 997-1026.

    Article  CAS  Google Scholar 

  • Ali, I. and Gupta, V.K., 2006. Advances in water treatment by adsorption technology. Nature Protocols, 1(6), pp. 2661-2667.

    Article  CAS  Google Scholar 

  • Ali, I., 2012. New generation adsorbents for water treatment. Chemical Reviews, 112(10), pp. 5073-5091.

    Article  CAS  Google Scholar 

  • Ali, I., Asim, M. and Khan, T.A., 2012. Low cost adsorbents for the removal of organic pollutants from wastewater. Journal of Environmental Management, 113, pp. 170-183.

    Article  CAS  Google Scholar 

  • Ali, M., Almohana, A.I., Alali, A.F., Kamal, M.A., Khursheed, A., Khursheed, A. and Kazmi, A.A., 2021 Common effluent treatment plants monitoring and process augmentation options to conform non-potable reuse. Frontiers in Environmental Science, p. 598.

    Google Scholar 

  • Ali, M.E., Hoque, M.E., Safdar Hossain, S.K. and Biswas, M.C., 2020. Nanoadsorbents for wastewater treatment: next generation biotechnological solution. International Journal of Environmental Science and Technology, 17, pp. 4095-4132.

    Article  CAS  Google Scholar 

  • Ali, S.M., 2018. Fabrication of a nanocomposite from an agricultural waste and its application as a biosorbent for organic pollutants. International Journal of Environmental Science and Technology, 15(6), pp. 1169-1178.

    Article  CAS  Google Scholar 

  • Ateia, M., Helbling, D. E., &Dichtel, W. R. (2020). Best practices for evaluating new materials as adsorbents for water treatment. ACS Materials Letters, 2(11), 1532-1544.

    Article  CAS  Google Scholar 

  • Azimvand, J., Didehban, K. and Mirshokraie, S.A., 2018. Preparation and characterization of nano-lignin biomaterial to remove basic red 2 dye from aqueous solutions. Pollution, 4(3), pp. 395-415.

    Google Scholar 

  • Aziz, H.A., Adlan, M.N. and Ariffin, K.S., 2008. Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr (III)) removal from water in Malaysia: post treatment by high quality limestone. Bioresource technology, 99(6), pp. 1578-1583.

    Article  CAS  Google Scholar 

  • Aziz, S.Q. and Ali, S.M., 2016. Performance of biological filtration process for wastewater treatment: a review. ZANCO Journal of Pure and Applied Sciences, 28(2), pp. 554-563.

    Google Scholar 

  • Barakat, M.A., 2011. New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4(4), pp. 361-377.

    Article  CAS  Google Scholar 

  • Belessi, V., Romanos, G., Boukos, N., Lambropoulou, D. and Trapalis, C., 2009. Removal of reactive red 195 from aqueous solutions by adsorption on the surface of TiO2 nanoparticles. Journal of Hazardous Materials, 170(2-3), pp. 836-844.

    Google Scholar 

  • Bhatnagar, A., Hogland, W., Marques, M. and Sillanpää, M., 2013. An overview of the modification methods of activated carbon for its water treatment applications. Chemical Engineering Journal, 219, pp. 499-511.

    Article  CAS  Google Scholar 

  • Biswas, M.C., Tiimob, B.J., Abdela, W., Jeelani, S. and Rangari, V.K., 2019. Nano silica-carbon-silver ternary hybrid induced antimicrobial composite films for food packaging application. Food Packaging and Shelf Life, 19, pp. 104-113.

    Article  Google Scholar 

  • Browne, M.A., Underwood, A.J., Chapman, M.G., Williams, R., Thompson, R.C. and van Franeker, J.A., 2015. Linking effects of anthropogenic debris to ecological impacts. Proceedings of the Royal Society B: Biological Sciences, 282(1807), p. 20142929.

    Article  Google Scholar 

  • Caliman, F.A. and Gavrilescu, M., 2009. Pharmaceuticals, personal care products and endocrine disrupting agents in the environment – a review. Clean-Soil, Air, Water, 37(4-5), pp. 277–303.

    Google Scholar 

  • Choudhary, V., Patel, M., Pittman Jr, C.U. and Mohan, D., 2020. Batch and continuous fixed-bed lead removal using himalayan pine needle biochar: isotherm and kinetic studies. ACS Omega, 5(27), pp. 16366-16378.

    Google Scholar 

  • Chu, J., Ma, H., Zhang, L. and Wang, Z., 2021. Biomass-derived paper-based nanolignin/palladium nanoparticle composite film for catalytic reduction of hexavalent chromium. Industrial Crops and Products, 165, p. 113439.

    Article  CAS  Google Scholar 

  • Comstock, S.E. and Boyer, T.H., 2014. Combined magnetic ion exchange and cation exchange for removal of DOC and hardness. Chemical Engineering Journal, 241, pp. 366-375.

    Article  CAS  Google Scholar 

  • Crane, R.A. and Scott, T.B., 2012. Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. Journal of Hazardous Materials, 211, pp. 112-125.

    Article  CAS  Google Scholar 

  • Crini, G., 2005. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Progress in Polymer Science, 30(1), pp. 38-70.

    Article  CAS  Google Scholar 

  • Crini, G. and Lichtfouse, E., 2019. Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17(1), pp. 145-155.

    Article  CAS  Google Scholar 

  • Dawood, S. and Sen, T., 2014. Review on dye removal from its aqueous solution into alternative cost effective and non-conventional adsorbents. Journal of Chemical and Process Engineering, 1(104), pp. 1-11.

    Google Scholar 

  • Dhaka, S., Kumar, R., Khan, M.A., Paeng, K.J., Kurade, M.B., Kim, S.J. and Jeon, B.H., 2017. Aqueous phase degradation of methyl paraben using UV-activated persulfate method. Chemical Engineering Journal, 321, pp. 11-19.

    Article  CAS  Google Scholar 

  • El-Sayed, M.E., 2020. Nanoadsorbents for water and wastewater remediation. Science of the Total Environment, 739, p. 139903.

    Article  CAS  Google Scholar 

  • Akhayere, E., Essien, E.A. and Kavaz, D., 2019. Effective and reusable nano-silica synthesized from barley and wheat grass for the removal of nickel from agricultural wastewater. Environmental Science and Pollution Research, 26(25), pp. 25802-25813.

    Google Scholar 

  • Fakhrian, S. and Baseri, H., 2020.Production of a magnetic biosorbent for removing pharmaceutical impurities. Korean Journal of Chemical Engineering, 37(9), pp. 1541-1551.

    Article  CAS  Google Scholar 

  • Fu, F. and Wang, Q., 2011. Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management, 92(3), pp. 407-418.

    Article  CAS  Google Scholar 

  • Gan, C., Liu, Y., Tan, X., Wang, S., Zeng, G., Zheng, B., Li, T., Jiang, Z. and Liu, W., 2015. Effect of porous zinc–biochar nanocomposites on Cr (VI) adsorption from aqueous solution. RSC Advances, 5(44), pp. 35107-35115.

    Article  CAS  Google Scholar 

  • García-Montaño, J., Ruiz, N., Munoz, I., Domenech, X., García-Hortal, J.A., Torrades, F. and Peral, J., 2006. Environmental assessment of different photo-Fenton approaches for commercial reactive dye removal. Journal of hazardous materials, 138(2), pp. 218-225.

    Article  CAS  Google Scholar 

  • Garcia-Segura, S., Salazar, R. and Brillas, E., 2013. Mineralization of phthalic acid by solar photoelectro-Fenton with a stirred boron-doped diamond/air-diffusion tank reactor: Influence of Fe3+ and Cu2+ catalysts and identification of oxidation products. Electrochimica Acta, 113, pp. 609-619.

    Article  CAS  Google Scholar 

  • Gunatilake, S.K., 2015. Methods of removing heavy metals from industrial wastewater. Journal of Multidisciplinary Engineering Science Studies, 1(1), p. 14.

    Google Scholar 

  • Gupta, V.K., Ali, I., Saleh, T.A., Nayak, A. and Agarwal, S., 2012. Chemical treatment technologies for waste-water recycling—an overview. RSC Advances, 2(16), pp. 6380-6388.

    Article  CAS  Google Scholar 

  • Han, L., Xue, S., Zhao, S., Yan, J., Qian, L. and Chen, M., 2015. Biochar supported nanoscale iron particles for the efficient removal of methyl orange dye in aqueous solutions. PloS One, 10(7), p. e0132067.

    Article  CAS  Google Scholar 

  • Hassan, M.M. and Carr, C.M., 2021. Biomass-derived porous carbonaceous materials and their composites as adsorbents for cationic and anionic dyes: A review. Chemosphere, 265, p. 129087.

    Article  CAS  Google Scholar 

  • Hernández, F., Sancho, J.V., Ibáñez, M. and Guerrero, C., 2007. Antibiotic residue determination in environmental waters by LC-MS. Trends in Analytical Chemistry, 26(6), pp. 466-485.

    Article  CAS  Google Scholar 

  • Hoque, M.E. and Philip, O.J., 2011. Biotechnological recovery of heavy metals from secondary sources—An overview. Materials Science and Engineering C, 31(2), pp. 57-66.

    Article  CAS  Google Scholar 

  • Hu, Y., Du, Y., Nie, G., Zhu, T., Ding, Z., Wang, H., Zhang, L. and Xu, Y., 2020. Selective and efficient sequestration of phosphate from waters using reusable nano-Zr (IV) oxide impregnated agricultural residue anion exchanger. Science of the Total Environment, 700, p. 134999.

    Article  CAS  Google Scholar 

  • Huang, X., Liu, Y., Liu, S., Tan, X., Ding, Y., Zeng, G., Zhou, Y., Zhang, M., Wang, S. and Zheng, B., 2016. Effective removal of Cr (VI) using β-cyclodextrin–chitosan modified biochars with adsorption/reduction bifunctional roles. RSC Advances, 6(1), pp. 94-104.

    Article  CAS  Google Scholar 

  • Hurt, R.H., Monthioux, M. and Kane, A., 2006. Toxicology of carbon nanomaterials: status, trends, and perspectives on the special issue. Carbon, 44(6), pp. 1028-1033.

    Article  CAS  Google Scholar 

  • Ilisz, I., Dombi, A., Mogyorósi, K. and Dékány, I., 2003. Photocatalytic water treatment with different TiO2 nanoparticles and hydrophilic/hydrophobic layer silicate adsorbents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 230(1-3), pp. 89-97.

    Google Scholar 

  • Inyang, M., Gao, B., Zimmerman, A., Zhou, Y. and Cao, X., 2015. Sorption and cosorption of lead and sulfapyridine on carbon nanotube-modified biochars. Environmental Science and Pollution Research, 22(3), pp. 1868-1876.

    Article  CAS  Google Scholar 

  • Joseph, L., Jun, B.M., Jang, M., Park, C.M., Muñoz-Senmache, J.C., Hernández-Maldonado, A.J., Heyden, A., Yu, M. and Yoon, Y., 2019. Removal of contaminants of emerging concern by metal-organic framework nanoadsorbents: A review. Chemical Engineering Journal, 369, pp. 928-946.

    Article  CAS  Google Scholar 

  • Kakavandi, B., Bahari, N., Kalantary, R.R. and Fard, E.D., 2019. Enhanced sono-photocatalysis of tetracycline antibiotic using TiO2 decorated on magnetic activated carbon (MAC@ T) coupled with US and UV: a new hybrid system. Ultrasonics Sonochemistry, 55, pp. 75-85.

    Google Scholar 

  • Kaliannan, D., Palaninaicker, S., Palanivel, V., Mahadeo, M.A., Ravindra, B.N. and Jae-Jin, S., 2019. A novel approach to preparation of nano-adsorbent from agricultural wastes (Saccharum officinarum leaves) and its environmental application. Environmental Science and Pollution Research, 26(6), pp. 5305-5314.

    Google Scholar 

  • Kardam, A., Rajawat, D.S., Kanwar, S. and M., 2017. Enhanced removal of cationic dye methylene blue from aqueous solution using nanocellulose prepared from agricultural waste sugarcane bagasse. In Recent Trends in Materials and Devices (pp. 29-36). Springer, Cham.

    Google Scholar 

  • Kaur, M., Kumari, S. and Sharma, P., 2020. Removal of Pb (II) from aqueous solution using nanoadsorbent of Oryza sativa husk: Isotherm, kinetic and thermodynamic studies. Biotechnology Reports, 25, p. e00410.

    Google Scholar 

  • Khajeh, M., Laurent, S. and Dastafkan, K., 2013. Nanoadsorbents: classification, preparation, and applications (with emphasis on aqueous media). Chemical Reviews, 113(10), pp. 7728-7768.

    Article  CAS  Google Scholar 

  • Krstić, V., Urošević, T. and Pešovski, B., 2018. A review on adsorbents for treatment of water and wastewaters containing copper ions. Chemical Engineering Science, 192, pp. 273-287.

    Article  CAS  Google Scholar 

  • Kumar, E., Bhatnagar, A., Hogland, W., Marques, M. and Sillanpää, M., 2014. Interaction of anionic pollutants with Al-based adsorbents in aqueous media–A review. Chemical Engineering Journal, 241, pp. 443-456.

    Article  CAS  Google Scholar 

  • Kumar, R., Kang, C.U., Mohan, D., Khan, M.A., Lee, J.H., Lee, S.S. and Jeon, B.H., 2020. Waste sludge derived adsorbents for arsenate removal from water. Chemosphere, 239, p. 124832.

    Article  CAS  Google Scholar 

  • Kumar, R., Kim, S.J., Kim, K.H., Kurade, M.B., Lee, S.H., Oh, S.E., Roh, H.S. and Jeon, B.H., 2018. Development of hybrid adsorbent for effective aqueous phase sorptive removal of copper. Surface and Interface Analysis, 50(4), pp. 480-487.

    Article  CAS  Google Scholar 

  • Kumar, R., Patel, M., Singh, P., Bundschuh, J., Pittman Jr, C.U., Trakal, L. and Mohan, D., 2019. Emerging technologies for arsenic removal from drinking water in rural and peri-urban areas: Methods, experience from, and options for Latin America. Science of the Total Environment, 694, p. 133427.

    Article  CAS  Google Scholar 

  • Kurniawan, T.A., Chan, G.Y., Lo, W.H. and Babel, S., 2006. Physico–chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 118(1-2), pp. 83-98.

    Article  CAS  Google Scholar 

  • Kwon, O.H., Kim, J.O., Cho, D.W., Kumar, R., Baek, S.H., Kurade, M.B. and Jeon, B.H., 2016. Adsorption of As (III), As (V) and Cu (II) on zirconium oxide immobilized alginate beads in aqueous phase. Chemosphere, 160, pp. 126-133.

    Article  CAS  Google Scholar 

  • Leiknes, T., 2009. The effect of coupling coagulation and flocculation with membrane filtration in water treatment: A review. Journal of Environmental Sciences, 21(1), pp. 8-12.

    Article  CAS  Google Scholar 

  • Li, G., Zhao, Z., Liu, J. and Jiang, G., 2011. Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica. Journal of Hazardous Materials, 192(1), pp. 277-283.

    CAS  Google Scholar 

  • Li, R., Zhang, Y., Deng, H., Zhang, Z., Wang, J.J., Shaheen, S.M., Xiao, R., Rinklebe, J., Xi, B., He, X. and Du, J., 2020. Removing tetracycline and Hg (II) with ball-milled magnetic nanobiochar and its potential on polluted irrigation water reclamation. Journal of Hazardous Materials, 384, p. 121095.

    Article  CAS  Google Scholar 

  • Li, Z., Chen, J. and Ge, Y., 2017. Removal of lead ion and oil droplet from aqueous solution by lignin-grafted carbon nanotubes. Chemical Engineering Journal, 308, pp. 809-817.

    Article  CAS  Google Scholar 

  • Mahamuni, N.N. and Adewuyi, Y.G., 2010. Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrasonics Sonochemistry, 17(6), pp. 990-1003.

    Article  CAS  Google Scholar 

  • Mahmoud, M.E., El-Ghanam, A.M., Saad, S.R. and Mohamed, R.H.A., 2020. Promoted removal of metformin hydrochloride anti-diabetic drug from water by fabricated and modified nanobiochar from artichoke leaves. Sustainable Chemistry and Pharmacy, 18, p. 100336.

    Article  Google Scholar 

  • Makeswari, M. and Santhi, T., 2013. Optimization of preparation of activated carbon from Ricinus communis leaves by microwave-assisted zinc chloride chemical activation: competitive adsorption of Ni2+ ions from aqueous solution. Journal of Chemistry, 2013.

    Google Scholar 

  • Manyangadze, M., Chikuruwo, N.H.M., Chakra, C.S., Narsaiah, T.B., Radhakumari, M. and Danha, G., 2020. Enhancing adsorption capacity of nano-adsorbents via surface modification: A review. South African Journal of Chemical Engineering, 31(1), pp. 25-32.

    Article  Google Scholar 

  • Mohan, S.V., Babu, V.L. and Sarma, P.N., 2007. Anaerobic biohydrogen production from dairy wastewater treatment in sequencing batch reactor (AnSBR): effect of organic loading rate. Enzyme and Microbial Technology, 41(4), pp. 506-515.

    Article  CAS  Google Scholar 

  • Moharrami, P. and Motamedi, E., 2020. Application of cellulose nanocrystals prepared from agricultural wastes for synthesis of starch-based hydrogel nanocomposites: Efficient and selective nanoadsorbent for removal of cationic dyes from water. Bioresource Technology, 313, p. 123661.

    Article  CAS  Google Scholar 

  • Moliner-Martínez, Y., Ribera, A., Coronado, E. and Campíns-Falcó, P., 2011. Preconcentration of emerging contaminants in environmental water samples by using silica supported Fe3O4 magnetic nanoparticles for improving mass detection in capillary liquid chromatography. Journal of Chromatography A, 1218(16), pp. 2276-2283.

    Google Scholar 

  • Moncayo-Lasso, A., Sanabria, J., Pulgarin, C. and Benítez, N., 2009. Simultaneous E. coli inactivation and NOM degradation in river water via photo-Fenton process at natural pH in solar CPC reactor. A new way for enhancing solar disinfection of natural water. Chemosphere, 77(2), pp. 296-300.

    Google Scholar 

  • Mudhoo, A., Mohan, D., Pittman Jr, C. U., Sharma, G., &Sillanpää, M. (2021). Adsorbents for real-scale water remediation: Gaps and the road forward. Journal of Environmental Chemical Engineering, 9(4), 105380.

    Article  CAS  Google Scholar 

  • Muhd Julkapli, N., Bagheri, S. and Bee Abd Hamid, S., 2014. Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. The Scientific World Journal, 2014.

    Google Scholar 

  • Naghdi, M., Taheran, M., Pulicharla, R., Rouissi, T., Brar, S.K., Verma, M. and Surampalli, R.Y., 2019. Pine-wood derived nanobiochar for removal of carbamazepine from aqueous media: Adsorption behavior and influential parameters. Arabian Journal of Chemistry, 12(8), pp. 5292-5301.

    Article  CAS  Google Scholar 

  • Nemati, M., Hosseini, S.M. and Shabanian, M., 2017. Novel electrodialysis cation exchange membrane prepared by 2-acrylamido-2-methylpropane sulfonic acid; heavy metal ions removal. Journal of Hazardous Materials, 337, pp. 90-104.

    Article  CAS  Google Scholar 

  • Patel, M., Kumar, R., Kishor, K., Mlsna, T., Pittman Jr, C. U. and Mohan, D. 2019. Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chemical Reviews, 119(6), 3510-3673.

    Article  CAS  Google Scholar 

  • Patel, M., Kumar, R., Pittman Jr, C. U. and Mohan, D., 2021. Ciprofloxacin and Acetaminophen sorption onto banana peel biochars: Environmental and process parameter influences. Environmental Research, 111218.

    Google Scholar 

  • Pei, A., Butchosa, N., Berglund, L.A. and Zhou, Q., 2013. Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter, 9(6), pp. 2047-2055.

    Article  CAS  Google Scholar 

  • Peng, H. and Guo, J., 2020. Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: a review. Environmental Chemistry Letters, pp. 1-14.

    Google Scholar 

  • Pham, T.D., Bui, T.T., Nguyen, V.T., Bui, T.K.V., Tran, T.T., Phan, Q.C., Pham, T.D. and Hoang, T.H., 2018. Adsorption of polyelectrolyte onto nanosilica synthesized from rice husk: characteristics, mechanisms, and application for antibiotic removal. Polymers, 10(2), p. 220.

    Article  CAS  Google Scholar 

  • Pham, T.D., Bui, T.T., Truong, T.T.T., Hoang, T.H., Le, T.S., Duong, V.D., Yamaguchi, A., Kobayashi, M. and Adachi, Y., 2020. Adsorption characteristics of beta-lactam cefixime onto nanosilica fabricated from rice husk with surface modification by polyelectrolyte. Journal of Molecular Liquids, 298, p. 111981.

    Google Scholar 

  • Preda, C., Ungureanu, M.C. and Vulpoi, C., 2012. Endocrine disruptors in the environment and their impact on human health. Environmental Engineering & Management Journal, 11(9).

    Google Scholar 

  • Qin, J.J., Wai, M.N., Oo, M.H. and Wong, F.S., 2002. A feasibility study on the treatment and recycling of a wastewater from metal plating. Journal of Membrane Science, 208(1-2), pp. 213-221.

    Article  CAS  Google Scholar 

  • Qiu, H., Liang, C., Yu, J., Zhang, Q., Song, M. and Chen, F., 2017. Preferable phosphate sequestration by nano-La (III)(hydr) oxides modified wheat straw with excellent properties in regeneration. Chemical Engineering Journal, 315, pp. 345-354.

    Article  CAS  Google Scholar 

  • Ramanayaka, S., Kumar, M., Etampawala, T. and Vithanage, M., 2020. Macro, colloidal and nanobiochar for oxytetracycline removal in synthetic hydrolyzed human urine. Environmental Pollution, 267, p. 115683.

    Article  CAS  Google Scholar 

  • Rangari, V.K., Apalangya, V., Biswas, M. and Jeelani, S., 2017. Preparation and microscopic characterization of biobased nanoparticles from natural waste materials. Microscopy and Microanalysis, 23(S1), pp. 1938-1939.

    Article  Google Scholar 

  • Rathi, B.S. and Kumar, P.S., 2021. Application of adsorption process for effective removal of emerging contaminants from water and wastewater. Environmental Pollution, 280, p. 116995.

    Article  CAS  Google Scholar 

  • Sachan, D., Ramesh, A. and Das, G., 2021. Green synthesis of silica nanoparticles from leaf biomass and its application to remove heavy metals from synthetic wastewater: A comparative analysis. Environmental Nanotechnology, Monitoring & Management, 16, p. 100467.

    Article  Google Scholar 

  • Saputra, E., Utama, P., Muhammad, S., Ang, H.M., Tade, M. and Wang, S., 2011, November. Catalytic oxidation of toxic organics in aqueous solution for wastewater treatment: a review. In Proceedings from TIChE International Conference.

    Google Scholar 

  • Sharma, P.R., Chattopadhyay, A., Sharma, S.K., Geng, L., Amiralian, N., Martin, D. and Hsiao, B.S., 2018. Nanocellulose from spinifex as an effective adsorbent to remove cadmium (II) from water. ACS Sustainable Chemistry & Engineering, 6(3), pp. 3279-3290.

    Article  CAS  Google Scholar 

  • Sharma, Y.C., Srivastava, V., Singh, V.K., Kaul, S.N. and Weng, C.H., 2009. Nano‐adsorbents for the removal of metallic pollutants from water and wastewater. Environmental technology, 30(6), pp. 583-609.

    Google Scholar 

  • Sohni, S., Hashim, R., Nidaullah, H., Lamaming, J. and Sulaiman, O., 2019. Chitosan/nano-lignin based composite as a new sorbent for enhanced removal of dye pollution from aqueous solutions. International Journal of Biological Macromolecules, 132, pp. 1304-1317.

    Article  CAS  Google Scholar 

  • Singh, P., Singh, R., Borthakur, A., Madhav, S., Singh, V.K., Tiwary, D., Srivastava, V.C. and Mishra, P.K., 2018. Exploring temple floral refuse for biochar production as a closed loop perspective for environmental management. Waste Management, 77, pp. 78-86.

    Article  CAS  Google Scholar 

  • Sun, L., Wan, S., Yu, Z., Wang, Y. and Wang, S., 2012. Anaerobic biological treatment of high strength cassava starch wastewater in a new type up-flow multistage anaerobic reactor. Bioresource Technology, 104, pp. 280-288.

    Article  CAS  Google Scholar 

  • Sun, P., Hui, C., Khan, R.A., Du, J., Zhang, Q. and Zhao, Y.H., 2015. Efficient removal of crystal violet using Fe3O4-coated biochar: the role of the Fe3O4 nanoparticles and modeling study their adsorption behavior. Scientific Reports, 5(1), pp. 1-12.

    Google Scholar 

  • Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y. and Yang, Z., 2015. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 125, pp. 70-85.

    Article  CAS  Google Scholar 

  • Tang, J., Lv, H., Gong, Y. and Huang, Y., 2015. Preparation and characterization of a novel graphene/biochar composite for aqueous phenanthrene and mercury removal. Bioresource Technology, 196, pp. 355-363.

    Article  CAS  Google Scholar 

  • Tolba, G.M., Barakat, N.A., Bastaweesy, A.M., Ashour, E.A., Abdelmoez, W., El-Newehy, M.H., Al-Deyab, S.S. and Kim, H.Y., 2015. Effective and highly recyclable nanosilica produced from the rice husk for effective removal of organic dyes. Journal of Industrial and Engineering Chemistry, 29, pp. 134-145.

    Article  CAS  Google Scholar 

  • Vaithyanathan, V.K., Cabana, H. and Vaidyanathan, V.K., 2021. Remediation of trace organic contaminants from biosolids: Influence of various pre-treatment strategies prior to Bacillus subtilis aerobic digestion. Chemical Engineering Journal, 419, p. 129966.

    Google Scholar 

  • Verma, S., Daverey, A. and Sharma, A., 2017. Slow sand filtration for water and wastewater treatment–a review. Environmental Technology Reviews, 6(1), pp. 47-58.

    Article  CAS  Google Scholar 

  • Wang, S., Gao, B., Li, Y., Creamer, A.E. and He, F., 2017. Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: batch and continuous flow tests. Journal of Hazardous Materials, 322, pp. 172-181.

    Article  CAS  Google Scholar 

  • Wang, T., Ai, S., Zhou, Y., Luo, Z., Dai, C., Yang, Y., Zhang, J., Huang, H., Luo, S. and Luo, L., 2018. Adsorption of agricultural wastewater contaminated with antibiotics, pesticides and toxic metals by functionalized magnetic nanoparticles. Journal of Environmental Chemical Engineering, 6(5), pp. 6468-6478.

    Article  CAS  Google Scholar 

  • Xiao, D., Ding, W., Zhang, J., Ge, Y., Wu, Z. and Li, Z., 2019. Fabrication of a versatile lignin-based nano-trap for heavy metal ion capture and bacterial inhibition. Chemical Engineering Journal, 358, pp. 310-320.

    Article  CAS  Google Scholar 

  • Yan, J., Han, L., Gao, W., Xue, S. and Chen, M., 2015a. Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene. Bioresource technology, 175, pp. 269-274.

    Article  CAS  Google Scholar 

  • Yan, L., Kong, L., Qu, Z., Li, L. and Shen, G., 2015b. Magnetic biochar decorated with ZnS nanocrystals for Pb (II) removal. ACS Sustainable Chemistry & Engineering, 3(1), pp. 125-132.

    Article  CAS  Google Scholar 

  • Zamboulis, D., Pataroudi, S.I., Zouboulis, A.I. and Matis, K.A., 2004. The application of sorptive flotation for the removal of metal ions. Desalination, 162, pp. 159-168.

    Article  CAS  Google Scholar 

  • Zazouli, M.A. and Kalankesh, L.R., 2017. Removal of precursors and disinfection by-products (DBPs) by membrane filtration from water; a review. Journal of Environmental Health Science and Engineering, 15(1), pp. 1-10.

    Google Scholar 

  • Zhan, C., Sharma, P.R., He, H., Sharma, S.K., McCauley-Pearl, A., Wang, R. and Hsiao, B.S., 2020. Rice husk based nanocellulose scaffolds for highly efficient removal of heavy metal ions from contaminated water. Environmental Science: Water Research & Technology, 6(11), pp. 3080-3090.

    CAS  Google Scholar 

  • Zhang, L., Zhu, T., Liu, X. and Zhang, W., 2016a. Simultaneous oxidation and adsorption of As (III) from water by cerium modified chitosan ultrafine nanobiosorbent. Journal of Hazardous Materials, 308, pp. 1-10.

    Article  CAS  Google Scholar 

  • Zhang, M. and Gao, B., 2013. Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite. Chemical Engineering Journal, 226, pp. 286-292.

    Article  CAS  Google Scholar 

  • Zhang, M., Gao, B., Yao, Y., Xue, Y. and Inyang, M., 2012. Synthesis, characterization, and environmental implications of graphene-coated biochar. Science of the Total Environment, 435, pp. 567-572.

    Article  CAS  Google Scholar 

  • Zhang, S., Wang, Z., Zhang, Y., Pan, H. and Tao, L., 2016b. Adsorption of methylene blue on organosolv lignin from rice straw. Procedia Environmental Sciences, 31, pp. 3-11.

    Article  CAS  Google Scholar 

  • Zheng, H., Wang, Z., Zhao, J., Herbert, S. and Xing, B., 2013. Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures. Environmental Pollution, 181, pp. 60-67.

    Article  CAS  Google Scholar 

  • Zhou, M.H. and Lei, L.C., 2006. Electrochemical regeneration of activated carbon loaded with p-nitrophenol in a fluidized electrochemical reactor. Electrochimica acta, 51(21), pp. 4489-4496.

    Article  CAS  Google Scholar 

  • Zielińska, M. and Galik, M., 2017. Use of ceramic membranes in a membrane filtration supported by coagulation for the treatment of dairy wastewater. Water, Air, & Soil Pollution, 228(5), p. 173.

    Article  CAS  Google Scholar 

  • Zong, E., Huang, G., Liu, X., Lei, W., Jiang, S., Ma, Z., Wang, J. and Song, P., 2018. A lignin-based nano-adsorbent for superfast and highly selective removal of phosphate. Journal of Materials Chemistry A, 6(21), pp. 9971-9983.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are thankful to Directorate of Research and Dean, College of Basic Sciences and Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar (Haryana, INDIA) for providing necessary facilities and financial support. Council of Scientific and Industrial Research (CSIR) and University Grant Commission (UGC), Government of India are kindly acknowledged for financial support to KJ and PR, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Kumar Dhaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jain, K. et al. (2022). Agricultural Residue-Derived Sustainable Nanoadsorbents for Wastewater Treatment. In: Madhav, S., Singh, P., Mishra, V., Ahmed, S., Mishra, P.K. (eds) Recent Trends in Wastewater Treatment . Springer, Cham. https://doi.org/10.1007/978-3-030-99858-5_11

Download citation

Publish with us

Policies and ethics