Skip to main content

Motion of Adiabatic or Isothermal Flow Headed by a Magnetogasdynamic Cylindrical Shock Through Rotating Dusty Gas

  • 540 Accesses

Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

Expansion of cylindrical shocks pushed out through a dynamic piston via rotating perfect dust-pervade gas in the presence of spatially diminishing magnetic field is inquired. The velocity and magnetic field are presumed to comply with power rules. The gas should be conducting electrically. The shock wave proceeds by mutable velocity as well as the total energy being non-stationary. Numerical calculations are accomplished to access the flow variable’s profiles. It is also assessed as to how the magnetic field affects the behaviour of the flow parameters. Further, it’s far exciting to word that in attendance of an azimuthal magnetic field the density and pressure evanesce at expansive region and therefore void is constituted at the symmetry’s axis, that’s in great accordance with laboratory situations to generate shock-wave.

Keywords

  • Magnetic field
  • Perfect dust-pervade gas
  • Rotating medium
  • Adiabatic and isothermal flows
  • Mechanics of fluids

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-99792-2_7
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-99792-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1

References

  1. Hartmann, L.: Accretion Processes in Star Formation. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  2. Balick, B., Frank, A.: Shapes and shaping of planetary nebulae. Ann. Rev. Astron. Astrophys. 40(1), 439–486 (2002)

    CrossRef  ADS  Google Scholar 

  3. Nath, G.: Magnetogasdynamic shock wave generated by a moving piston in a rotational axisymmetric isothermal flow of perfect gas with variable density. Adv. Space Res. 47(9), 1463–1471 (2011)

    CrossRef  ADS  Google Scholar 

  4. Nath, G., Sahu, P.K.: Flow behind an exponential shock wave in a rotational axisymmetric perfect gas with magnetic field and variable density. SpringerPlus 5(1), 1–18 (2016)

    CrossRef  Google Scholar 

  5. Nath, G., Sahu, P.K., Chaurasia, S.: Modelling. Measur. Control B 87(4), 236–243 (2018)

    CrossRef  Google Scholar 

  6. Nath, G., Sahu, P.K., Chaurasia, S.: Self-similar solution for the flow behind an exponential shock wave in a rotational axisymmetric non-ideal gas with magnetic field. Chin. J. Phys. 58, 280–293 (2019)

    CrossRef  Google Scholar 

  7. Sahu, P.K.: Shock wave driven out by a piston in a mixture of a non-ideal gas and small solid particles under the influence of azimuthal or axial magnetic field. Braz. J. Phys. 50(5), 548–565 (2020)

    CrossRef  ADS  Google Scholar 

  8. Sahu, P.K.: Magnetogasdynamic exponential shock wave in a self-gravitating, rotational axisymmetric non-ideal gas under the influence of heat-conduction and radiation heat-flux. Ricerche di Matematica 1–37 (2021)

    Google Scholar 

  9. Sahu, P.K.: The influence of magnetic and gravitational fields in a non-ideal dusty gas with heat conduction and radiation heat flux. Indian J. Phys. 1–15 (2022)

    Google Scholar 

  10. Verma, M.K.: Statistical theory of magnetohydrodynamic turbulence: recent results. Phys. Rep. 401(5–6), 229–380 (2004)

    CrossRef  ADS  MathSciNet  Google Scholar 

  11. Levin, V.A., Skopina, G.A.: Detonation wave propagation in rotational gas flows. J. Appl. Mech. Tech. Phys. 45(4), 457–460 (2004)

    CrossRef  ADS  MathSciNet  MATH  Google Scholar 

  12. Nath, G.: Self-similar solution of cylindrical shock wave propagation in a rotational axisymmetric mixture of a non-ideal gas and small solid particles. Meccanica 47(7), 1797–1814 (2012)

    CrossRef  MathSciNet  MATH  Google Scholar 

  13. Nath, G., Sahu, P.K., Dutta, M.: Magnetohydrodynamic cylindrical shock in a rotational axisymmetric non-ideal gas under the action of monochromatic radiation. Proc. Eng. 127, 1126–1133 (2015)

    CrossRef  Google Scholar 

  14. Nath, G., Sahu, P.K.: Unsteady adiabatic flow behind a cylindrical shock in a rotational axisymmetric non-ideal gas under the action of monochromatic radiation. Proc. Eng. 144, 1226–1233 (2016)

    CrossRef  Google Scholar 

  15. Nath, G., Sahu, P.K.: Flow behind an exponential shock wave in a rotational axisymmetric non-ideal gas with conduction and radiation heat flux. Int. J. Appl. Comput. Math. 3(4), 2785–2801 (2017)

    CrossRef  MathSciNet  MATH  Google Scholar 

  16. Nath, G., Sahu, P.K.: Similarity solution for the flow behind a cylindrical shock wave in a rotational axisymmetric gas with magnetic field and monochromatic radiation. Ain Shams Eng. J. 9(4), 1151–1159 (2018)

    CrossRef  Google Scholar 

  17. Sahu, P.K.: Propagation of an exponential shock wave in a rotational axisymmetric isothermal or adiabatic flow of a self-gravitating non-ideal gas under the influence of axial or azimuthal magnetic field. Chaos Solitons Fractals 135, 109739 (2020)

    CrossRef  MathSciNet  MATH  Google Scholar 

  18. Sahu, P.K.: Shock wave propagation in perfectly conducting rotational axisymmetric two-phase medium with increasing energy under the action of heat conduction and radiation heat flux. Chin. J. Phys. 72, 176–190 (2021)

    CrossRef  MathSciNet  Google Scholar 

  19. Sahu, P.K.: Flow behind the magnetogasdynamical cylindrical shock wave in rotating non-ideal dusty gas with monochromatic radiation. Plasma Res. Exp. 3(4), 045004 (2021)

    CrossRef  ADS  Google Scholar 

  20. Pai, S.I., Menon, S., Fan, Z.Q.: Similarity solutions of a strong shock wave propagation in a mixture of a gas and dusty particles. Int. J. Eng. Sci. 18(12), 1365–1373 (1980)

    CrossRef  MATH  Google Scholar 

  21. Higashino, F., Suzuki, T.: The effect of particles on blast waves in a dusty gas. Zeitschrift für Naturforschung A 35(12), 1330–1336 (1980)

    CrossRef  ADS  Google Scholar 

  22. Miura, H., Glass, I.I.: Proc. R. Soc. Lond. A. Math. Phys. Sci. 397, 295–309 (1985)

    Google Scholar 

  23. Popel, S.I., Gisko, A.A.: Nonlinear Process. Geophys. 13, 223–229 (2006)

    Google Scholar 

  24. Pai, S.I.: Two-Phase Flows, vol. 3. Springer (2013)

    Google Scholar 

  25. Nath, G., Sahu, P.K.: Self-similar solution of a cylindrical shock wave under the action of monochromatic radiation in a rotational axisymmetric dusty gas. Commun. Theor. Phys. 67(3), 327 (2017)

    CrossRef  ADS  Google Scholar 

  26. Nath, G., Sahu, P.K.: Propagation of a cylindrical shock wave in a mixture of a non-ideal gas and small solid particles under the action of monochromatic radiation. Combust. Explos. Shock Waves 53(3), 298–308 (2017)

    CrossRef  Google Scholar 

  27. Sahu, P.K.: Self-similar solution of spherical shock wave propagation in a mixture of a gas and small solid particles with increasing energy under the influence of gravitational field and monochromatic radiation. Commun. Theor. Phys. 70(2), 197 (2018)

    CrossRef  ADS  MathSciNet  Google Scholar 

  28. Sahu, P.K.: Analysis of magnetogasdynamic spherical shock wave in dusty real gas with gravitational field and monochromatic radiation. Eur. Phys. J. Plus 136(4), 1–19 (2021)

    CrossRef  Google Scholar 

  29. Sedov, L.I.: Similarity and dimensional methods in mechanics. Academic Press, New York (1959)

    MATH  Google Scholar 

  30. Laumbach, D.D., Probstein, R.F.: Self-similar strong shocks with radiation in a decreasing exponential atmosphere. Phys. Fluids 13(5), 1178–1183 (1970)

    CrossRef  ADS  Google Scholar 

  31. Vishwakarma, J.P., Pandey, S.N.: Propagation of strong spherical shock waves in a dusty gas. Phys. Scripta 68(4), 259 (2003)

    CrossRef  ADS  MATH  Google Scholar 

  32. Steiner, H., Hirschler, T.: A self-similar solution of a shock propagation in a dusty gas. Eur. J. Mech. B Fluids 21(3), 371–380 (2002)

    CrossRef  MathSciNet  MATH  Google Scholar 

  33. Zel’Dovich, Y.B., Raizer, Y.P.: Physics of shock waves and high-temperature hydrodynamic phenomena. Courier Corporation (2002)

    Google Scholar 

  34. Freeman, R.A., Craggs, J.D.: Shock waves from spark discharges. J. Phys. D Appl. Phys. 2(3), 421 (1969)

    CrossRef  ADS  Google Scholar 

  35. Sahu, P.K.: Similarity solution for a spherical shock wave in a non-ideal gas under the influence of gravitational field and monochromatic radiation with increasing energy. Math. Methods Appl. Sci. 42(14), 4734–4746 (2019)

    CrossRef  ADS  MathSciNet  MATH  Google Scholar 

  36. Sahu, P.K.: Similarity solution for the flow behind an exponential shock wave in a rotational axisymmetric non-ideal gas under the influence of gravitational field with conductive and radiative heat fluxes. In: International Conference on Innovation in Modern Science and Technology, pp. 1060-1070. Springer, Cham (2019)

    Google Scholar 

  37. Sahu, P.K.: Unsteady flow behind an MHD exponential shock wave in a rotational axisymmetric non-ideal gas with conductive and radiative heat fluxes. In: International Conference on Innovation in Modern Science and Technology, pp. 1049–1059. Springer, Cham (2019)

    Google Scholar 

Download references

Acknowledgements

The author is thankful to Prof. M. K. Verma, Department of Physics, Indian Institute of Technology Kanpur, Kanpur–208016, India for fruitful discussions. This work was supported by the research grant no. TAR/2018/000150 under Teachers Associateship for Research Excellence (TARE) scheme from the Science and Engineering Research Board (SERB), India. The author gracefully acknowledges financial support from SERB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Sahu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Sahu, P.K. (2022). Motion of Adiabatic or Isothermal Flow Headed by a Magnetogasdynamic Cylindrical Shock Through Rotating Dusty Gas. In: Banerjee, S., Saha, A. (eds) Nonlinear Dynamics and Applications. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-99792-2_7

Download citation