Skip to main content

Effect of q Parameter and Critical Beam Radius on Propagation Dynamics of q Gaussian Beam in Cold Quantum Plasma

Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

The q Gaussian intensity distribution is very interesting as in the limit \( q \rightarrow \infty \), it reduces to the Gaussian intensity profile. Naturally, the freedom of exploring the q exponent enables us to study a wide range of propagation dynamics. The quantum plasma offers wide possibilities of its existence right from astrophysical situations to laboratory plasmas. Keeping in mind the wide applicability domain of cold quantum plasma, we have theoretically investigated the propagation behavior of q Gaussian laser beam in cold quantum plasma. The ordinary nonlinear differential equation is set up by following Akhmanov’s parabolic equation approach under WKB and paraxial approximations. The effect of the q parameter on the critical curve is explored graphically. The variation in the beam width parameter f over normalized distance \(\zeta \) due to variation in the q-parameter is graphically depicted and discussed at the end. It is observed that the supercritical region and self focusing length are affected by the q parameter significantly.

Keywords

  • q-Gaussian
  • Cold quantum plasma
  • Critical beam radius
  • Self focusing

Supported by DST-SERB, New Delhi, the Special Assistance Program (SAP), Department of Physics, Shivaji University, Kolhapur.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-99792-2_5
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-99792-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

References

  1. Deutsch, C., Furukawa, H., Mima, K., Murakami, M., Nishihara, K.: Interaction physics of the fast ignitor concept. Phys. Rev. Lett. 77, 2483 (1996). https://doi.org/10.1103/PhysRevLett.77.2483

  2. Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D., Mason, R.J.: Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 1626 (1994). https://doi.org/10.1063/1.870664

  3. Regan, S.P., Bradley, D.K., Chirokikh, A.V., Craxton, R.S., Meyerhofer, D.D., Seka, W., Short, R.W., Simon, A., Town, R.P.J., Yaakobi, B.: Laser-plasma interactions in long-scale-length plasmas under direct-drive National Ignition Facility conditions. Phys. Plasmas 6, 2072 (1999). https://doi.org/10.1063/1.873716

    CrossRef  ADS  Google Scholar 

  4. Malka, V.: Laser plasma accelerators. Phys. Plasmas 19, 055501 (2012). https://doi.org/10.1063/1.3695389

  5. Wiggins, S.M., Issac, R.C., Welsh, G.H., Brunetti, E., Shanks, R.P., Anania, M.P., Cipiccia, S., Manahan, G.G., Aniculaesei, C., Ersfeld, B., Islam, M.R., Burgess, R.T.L., Vieux, G., Gillespie, W.A., MacLeod, A.M., van der Geer, S.B., de Loos, M.J., Jaroszynski, D.A.: High quality electron beams from a laser wakefield accelerator. Plasma Phys. Control. Fus. 52, 124032 (2010). https://doi.org/10.1088/0741-3335/52/12/124032

  6. Fiuza, F., Stockem, A., Boella, E., Fonseca, R.A., Silva, L.O., Haberberger, D., Tochitsky, S., Gong, C., Mori, W.B., Joshi, C.: Laser-driven shock acceleration of monoenergetic ion beams. Phys. Rev. Lett. 109, 215001 (2012). https://doi.org/10.1103/PhysRevLett.109.215001

    CrossRef  ADS  Google Scholar 

  7. Hooker, S.M.: Developments in laser-driven plasma accelerators. Nat. Photonics 7, 775 (2013). https://doi.org/10.1038/nphoton.2013.234

    CrossRef  ADS  Google Scholar 

  8. Sprangle, P., Esarey, E., Ting, A.: Nonlinear theory of intense laser-plasma interactions. Phys. Rev. Lett. 64, 2011 (1990). https://doi.org/10.1103/PhysRevLett.64.2011

    CrossRef  ADS  Google Scholar 

  9. Ferrari, H.E., Lifschitz, A.F., Maynard, G., Cros B.: Electron acceleration by laser wakefield and X-ray emission at moderate intensity and density in long plasmas. Phys. Plasmas 18, 083108 (2011). https://doi.org/10.1063/1.3624771

  10. Liu, Y., Dong, Q., Peng, X., Jin, Z., Zhang, J.: Soft X-ray emission, angular distribution of hot electrons, and absorption studies of argon clusters in intense laser pulses. Phys. Plasmas 16, 043301 (2009). https://doi.org/10.1063/1.3125308

    CrossRef  ADS  Google Scholar 

  11. Bagchi, S., Kiran, P.P., Yang, K., Rao, A.M., Bhuyan, M.K., Krishnamurthy, M., Kumar, G.R.: Bright, low debris, ultrashort hard x-ray table top source using carbon nanotubes. Phys. Plasmas 18, 014502 (2011). https://doi.org/10.1063/1.3531685

    CrossRef  ADS  Google Scholar 

  12. Patil, S.D., Takale, M.V., Navare, S.T., Dongare, M.B., Fulari, V.J.: Self-focusing of Gaussian laser beam in relativistic cold quantum plasma. Optik 124, 180–183(2013). https://doi.org/10.1016/j.ijleo.2011.11.061

  13. Habibi, M., Ghamari, F.: Stationary self-focusing of intense laser beam in cold quantum plasma using ramp density profile. Phys. Plasmas 19, 103110 (2012). https://doi.org/10.1063/1.4762848

  14. Walia, K., Tripathi, D.: Self-focusing of elliptical laser beam in cold quantum plasma. Optik 186, 46–51(2019). https://doi.org/10.1016/j.ijleo.2019.04.081

  15. Thakur, V., Kant, N.: Combined effect of chirp and exponential density ramp on relativistic self-focusing of Hermite-Cosine-Gaussian laser in collisionless cold quantum plasma. Braz. J. Phys. 49, 113–118 (2019). https://doi.org/10.1007/s13538-018-00624-7

  16. Habibi, M., Ghamari, F.: Improved focusing of a Cosh-Gaussian laser beam in quantum plasma: higher order paraxial theory. IEEE Trans. Plasma Sci. 43, 2160–2165 (2015). https://doi.org/10.1109/TPS.2015.2440319

  17. Patel, P.K., Key, M.H., MacKinnon, A.J., Berry, R., Borghesi, M., Chambers, D.M., Chen, H., Clarke, R., Damian, C., Eagleton, R., Freeman, R., Glenzer, S., Gregori, G., Heathcote, R., Hey, D., Izumi, N., Kar, S., King, J., Nikroo, A., Niles, A., Park, H.S., Pasley, J., Patel, N., Shepherd, R., Snavely, R.A., Steinman, D., Stoeckl, C., Storm, M., Theobald, W., Town, R., Van Maren, R., Wilks, S.C., Zhang, B.: Integrated laser-target interaction experiments on the RAL petawatt laser. Plasma Phys. Control Fus. 47, B833–B840 (2005). https://doi.org/10.1088/0741-3335/47/12B/S65

  18. Nakatsutsumi, M., Davies, J.R., Kodama, R.: Space and time resolved measurements of the heating of solids to ten million kelvin by a petawatt laser. New J. Phys. 10, 043046 (2008). https://doi.org/10.1088/1367-2630/10/4/043046

  19. Sharma, A., Kourakis, I.: Spatial evolution of a q-Gaussian laser beam in relativistic plasma. Laser Part. Beams 28, 479–489 (2010). https://doi.org/10.1017/S0263034610000479

  20. Kaur, R., Gill, T.S.: Relativistic effects on evolution of a q-Gaussian laser beam in magnetoplasma: application of higher order corrections. Phys. Plasmas 24, 053105 (2017). https://doi.org/10.1063/1.4983309

  21. Wang, L., Hong, X.-R., Sun, J.-A., Tang, R.-A., Yang, Y., Zhou, W.-J., Tian, J.-M., Duan, W.-S.: Effects of relativistic and channel focusing on q-Gaussian laser beam propagating in a preformed parabolic plasma channel. Phys. Lett. A, 381, 2065–2071 (2017). https://doi.org/10.1016/j.physleta.2017.04.033

  22. Valkunde, A.T., Vhanmore, B.D., Urunkar, T.U., Gavade, K.M., Patil, S.D., Takale, M.V.: Effect of exponential density transition on self-focusing of q-Gaussian laser beam in collisionless plasma. AIP Conf. Proc. 1953, 140088 (2018). https://doi.org/10.1063/1.5033263

  23. Vhanmore, B.D., Patil, S.D., Valkunde, A.T., Urunkar, T.U., Gavade, K.M., Takale, M.V., Gupta, D.N.: Effect of q-parameter on relativistic self focusing of q Gaussian laser beam in plasma. Optik 158, 574–579 (2018). https://doi.org/10.1016/j.ijleo.2017.12.182

  24. Kashyp, R., Aggrawal, M., Gill, T.S., Arora, N.S., Kumar, H., Moudhagill, D.: Self-focusing of q-Gaussian laser beam in relativistic plasma under the effect of light absorption. Optik Int. J. Light Electron. Opt. 182, 1030–1038 (2019). https://doi.org/10.1016/j.ijleo.2018.12.105

  25. Gupta, N., Kumar, S.: Generation of second harmonics of relativistically self-focused q-Gaussian laser beams in underdense plasma with axial density ramp. Opt. Quant. Electron. 53, 193 (2021). https://doi.org/10.1007/s11082-021-02827-w

    CrossRef  Google Scholar 

  26. Gupta, N.: Second harmonic generation of q-Gaussian laser beam in plasma channel created by ignitor heater technique. Laser Part. Beams 37, 184–196 (2019). https://doi.org/10.1017/S0263034619000193

  27. Akhmanov, S.A., Sukhorukov, A.P., Khokhlov, R.V.: Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. Uspekhi 10(5), 609–636 (1968). https://doi.org/10.1070/PU1968v010n05ABEH005849

    CrossRef  ADS  Google Scholar 

  28. Sodha, M.S., Ghatak, A.K., Tripathi, V.K.: Self focusing of laser beams in plasmas and semiconductors. Prog. Opt. 13, 169–265 (1976). https://doi.org/10.1016/S0079-6638(08)70021-0

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. T. Takale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Takale, P.T. et al. (2022). Effect of q Parameter and Critical Beam Radius on Propagation Dynamics of q Gaussian Beam in Cold Quantum Plasma. In: Banerjee, S., Saha, A. (eds) Nonlinear Dynamics and Applications. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-99792-2_5

Download citation