Abstract
The q Gaussian intensity distribution is very interesting as in the limit \( q \rightarrow \infty \), it reduces to the Gaussian intensity profile. Naturally, the freedom of exploring the q exponent enables us to study a wide range of propagation dynamics. The quantum plasma offers wide possibilities of its existence right from astrophysical situations to laboratory plasmas. Keeping in mind the wide applicability domain of cold quantum plasma, we have theoretically investigated the propagation behavior of q Gaussian laser beam in cold quantum plasma. The ordinary nonlinear differential equation is set up by following Akhmanov’s parabolic equation approach under WKB and paraxial approximations. The effect of the q parameter on the critical curve is explored graphically. The variation in the beam width parameter f over normalized distance \(\zeta \) due to variation in the q-parameter is graphically depicted and discussed at the end. It is observed that the supercritical region and self focusing length are affected by the q parameter significantly.
Keywords
- q-Gaussian
- Cold quantum plasma
- Critical beam radius
- Self focusing
Supported by DST-SERB, New Delhi, the Special Assistance Program (SAP), Department of Physics, Shivaji University, Kolhapur.
This is a preview of subscription content, access via your institution.
Buying options


References
Deutsch, C., Furukawa, H., Mima, K., Murakami, M., Nishihara, K.: Interaction physics of the fast ignitor concept. Phys. Rev. Lett. 77, 2483 (1996). https://doi.org/10.1103/PhysRevLett.77.2483
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D., Mason, R.J.: Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 1626 (1994). https://doi.org/10.1063/1.870664
Regan, S.P., Bradley, D.K., Chirokikh, A.V., Craxton, R.S., Meyerhofer, D.D., Seka, W., Short, R.W., Simon, A., Town, R.P.J., Yaakobi, B.: Laser-plasma interactions in long-scale-length plasmas under direct-drive National Ignition Facility conditions. Phys. Plasmas 6, 2072 (1999). https://doi.org/10.1063/1.873716
Malka, V.: Laser plasma accelerators. Phys. Plasmas 19, 055501 (2012). https://doi.org/10.1063/1.3695389
Wiggins, S.M., Issac, R.C., Welsh, G.H., Brunetti, E., Shanks, R.P., Anania, M.P., Cipiccia, S., Manahan, G.G., Aniculaesei, C., Ersfeld, B., Islam, M.R., Burgess, R.T.L., Vieux, G., Gillespie, W.A., MacLeod, A.M., van der Geer, S.B., de Loos, M.J., Jaroszynski, D.A.: High quality electron beams from a laser wakefield accelerator. Plasma Phys. Control. Fus. 52, 124032 (2010). https://doi.org/10.1088/0741-3335/52/12/124032
Fiuza, F., Stockem, A., Boella, E., Fonseca, R.A., Silva, L.O., Haberberger, D., Tochitsky, S., Gong, C., Mori, W.B., Joshi, C.: Laser-driven shock acceleration of monoenergetic ion beams. Phys. Rev. Lett. 109, 215001 (2012). https://doi.org/10.1103/PhysRevLett.109.215001
Hooker, S.M.: Developments in laser-driven plasma accelerators. Nat. Photonics 7, 775 (2013). https://doi.org/10.1038/nphoton.2013.234
Sprangle, P., Esarey, E., Ting, A.: Nonlinear theory of intense laser-plasma interactions. Phys. Rev. Lett. 64, 2011 (1990). https://doi.org/10.1103/PhysRevLett.64.2011
Ferrari, H.E., Lifschitz, A.F., Maynard, G., Cros B.: Electron acceleration by laser wakefield and X-ray emission at moderate intensity and density in long plasmas. Phys. Plasmas 18, 083108 (2011). https://doi.org/10.1063/1.3624771
Liu, Y., Dong, Q., Peng, X., Jin, Z., Zhang, J.: Soft X-ray emission, angular distribution of hot electrons, and absorption studies of argon clusters in intense laser pulses. Phys. Plasmas 16, 043301 (2009). https://doi.org/10.1063/1.3125308
Bagchi, S., Kiran, P.P., Yang, K., Rao, A.M., Bhuyan, M.K., Krishnamurthy, M., Kumar, G.R.: Bright, low debris, ultrashort hard x-ray table top source using carbon nanotubes. Phys. Plasmas 18, 014502 (2011). https://doi.org/10.1063/1.3531685
Patil, S.D., Takale, M.V., Navare, S.T., Dongare, M.B., Fulari, V.J.: Self-focusing of Gaussian laser beam in relativistic cold quantum plasma. Optik 124, 180–183(2013). https://doi.org/10.1016/j.ijleo.2011.11.061
Habibi, M., Ghamari, F.: Stationary self-focusing of intense laser beam in cold quantum plasma using ramp density profile. Phys. Plasmas 19, 103110 (2012). https://doi.org/10.1063/1.4762848
Walia, K., Tripathi, D.: Self-focusing of elliptical laser beam in cold quantum plasma. Optik 186, 46–51(2019). https://doi.org/10.1016/j.ijleo.2019.04.081
Thakur, V., Kant, N.: Combined effect of chirp and exponential density ramp on relativistic self-focusing of Hermite-Cosine-Gaussian laser in collisionless cold quantum plasma. Braz. J. Phys. 49, 113–118 (2019). https://doi.org/10.1007/s13538-018-00624-7
Habibi, M., Ghamari, F.: Improved focusing of a Cosh-Gaussian laser beam in quantum plasma: higher order paraxial theory. IEEE Trans. Plasma Sci. 43, 2160–2165 (2015). https://doi.org/10.1109/TPS.2015.2440319
Patel, P.K., Key, M.H., MacKinnon, A.J., Berry, R., Borghesi, M., Chambers, D.M., Chen, H., Clarke, R., Damian, C., Eagleton, R., Freeman, R., Glenzer, S., Gregori, G., Heathcote, R., Hey, D., Izumi, N., Kar, S., King, J., Nikroo, A., Niles, A., Park, H.S., Pasley, J., Patel, N., Shepherd, R., Snavely, R.A., Steinman, D., Stoeckl, C., Storm, M., Theobald, W., Town, R., Van Maren, R., Wilks, S.C., Zhang, B.: Integrated laser-target interaction experiments on the RAL petawatt laser. Plasma Phys. Control Fus. 47, B833–B840 (2005). https://doi.org/10.1088/0741-3335/47/12B/S65
Nakatsutsumi, M., Davies, J.R., Kodama, R.: Space and time resolved measurements of the heating of solids to ten million kelvin by a petawatt laser. New J. Phys. 10, 043046 (2008). https://doi.org/10.1088/1367-2630/10/4/043046
Sharma, A., Kourakis, I.: Spatial evolution of a q-Gaussian laser beam in relativistic plasma. Laser Part. Beams 28, 479–489 (2010). https://doi.org/10.1017/S0263034610000479
Kaur, R., Gill, T.S.: Relativistic effects on evolution of a q-Gaussian laser beam in magnetoplasma: application of higher order corrections. Phys. Plasmas 24, 053105 (2017). https://doi.org/10.1063/1.4983309
Wang, L., Hong, X.-R., Sun, J.-A., Tang, R.-A., Yang, Y., Zhou, W.-J., Tian, J.-M., Duan, W.-S.: Effects of relativistic and channel focusing on q-Gaussian laser beam propagating in a preformed parabolic plasma channel. Phys. Lett. A, 381, 2065–2071 (2017). https://doi.org/10.1016/j.physleta.2017.04.033
Valkunde, A.T., Vhanmore, B.D., Urunkar, T.U., Gavade, K.M., Patil, S.D., Takale, M.V.: Effect of exponential density transition on self-focusing of q-Gaussian laser beam in collisionless plasma. AIP Conf. Proc. 1953, 140088 (2018). https://doi.org/10.1063/1.5033263
Vhanmore, B.D., Patil, S.D., Valkunde, A.T., Urunkar, T.U., Gavade, K.M., Takale, M.V., Gupta, D.N.: Effect of q-parameter on relativistic self focusing of q Gaussian laser beam in plasma. Optik 158, 574–579 (2018). https://doi.org/10.1016/j.ijleo.2017.12.182
Kashyp, R., Aggrawal, M., Gill, T.S., Arora, N.S., Kumar, H., Moudhagill, D.: Self-focusing of q-Gaussian laser beam in relativistic plasma under the effect of light absorption. Optik Int. J. Light Electron. Opt. 182, 1030–1038 (2019). https://doi.org/10.1016/j.ijleo.2018.12.105
Gupta, N., Kumar, S.: Generation of second harmonics of relativistically self-focused q-Gaussian laser beams in underdense plasma with axial density ramp. Opt. Quant. Electron. 53, 193 (2021). https://doi.org/10.1007/s11082-021-02827-w
Gupta, N.: Second harmonic generation of q-Gaussian laser beam in plasma channel created by ignitor heater technique. Laser Part. Beams 37, 184–196 (2019). https://doi.org/10.1017/S0263034619000193
Akhmanov, S.A., Sukhorukov, A.P., Khokhlov, R.V.: Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. Uspekhi 10(5), 609–636 (1968). https://doi.org/10.1070/PU1968v010n05ABEH005849
Sodha, M.S., Ghatak, A.K., Tripathi, V.K.: Self focusing of laser beams in plasmas and semiconductors. Prog. Opt. 13, 169–265 (1976). https://doi.org/10.1016/S0079-6638(08)70021-0
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Takale, P.T. et al. (2022). Effect of q Parameter and Critical Beam Radius on Propagation Dynamics of q Gaussian Beam in Cold Quantum Plasma. In: Banerjee, S., Saha, A. (eds) Nonlinear Dynamics and Applications. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-99792-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-99792-2_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-99791-5
Online ISBN: 978-3-030-99792-2
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)