Skip to main content

Robust Adaptive Controller for a Class of Uncertain Nonlinear Systems with Disturbances

  • Conference paper
  • First Online:
Nonlinear Dynamics and Applications

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

  • 1035 Accesses

Abstract

This paper presents a method to synthesize the controller for uncertain nonlinear systems based on a combination of sliding mode control, adaptive control, and radial basis function (RBF) neural network. We propose an adaptive control law based on the RBF neural network to identify and compensate for variable parameter components, nonlinear function vectors, and external disturbance. The main linear component is built based on a sliding control. The designed controller has the advantage of being resistant to the elements of uncertainty and has a high control quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang, S.N., Tan, K.K., Lee, T.H.: A combined PID/adaptive controller for a class of nonlinear systems. Automatica 37(4), 611–618 (2001). https://doi.org/10.1016/S0005-1098(00)00195-3

    Article  MathSciNet  MATH  Google Scholar 

  2. Arefi, M., Jahed-Motlagh, M., Karimi, H.: Adaptive neural stabilizing controller for a class of mismatched uncertain nonlinear systems by state and output feedback. IEEE Trans. Cybern. 45(8), 1587–1596 (2015). https://doi.org/10.1109/TCYB.2014.2356414

    Article  Google Scholar 

  3. Oveisi, A., Jeronimo, M., Nestorović, T.: Nonlinear observer-based recurrent wavelet neuro-controller in disturbance rejection control of flexible structures. Eng. Appl. Artif. Intell. 69, 50–64 (2018). https://doi.org/10.1016/j.engappai.2017.12.009

    Article  Google Scholar 

  4. Zhang, Y., Qin, S.: Adaptive actuator fault compensation for linear systems with matching and unmatching uncertainties. J. Process. Control. 19(6), 985–990 (2009). https://doi.org/10.1016/j.jprocont.2008.12.008

    Article  ADS  Google Scholar 

  5. Tao, G., Chen, S., Joshi, S.: An adaptive actuator failure compensation controller using output feedback. IEEE Trans. Autom. Control. 47(3), 506–511 (2002). https://doi.org/10.1109/9.989150

    Article  MathSciNet  MATH  Google Scholar 

  6. Tang, X., Tao, G., Wang, L., Stankovic, J.: Robust and adaptive actuator failure compensation designs for a rocket fairing structural-acoustic model. IEEE Trans. Aerosp. Electron. Syst. 40(4), 1359–1366 (2004). https://doi.org/10.1109/TAES.2004.1386887

    Article  ADS  Google Scholar 

  7. Maity, A., Höcht, L., Holzapfel, F.: Time-varying parameter model reference adaptive control and its application to aircraft. Eur. J. Control. 50, 161–175 (2019). https://doi.org/10.1016/j.ejcon.2019.04.007

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhang B., Liu L., Ding K.: Optimal integral sliding mode control with feedforward compensation for nonlinear systems and its applications. In: 34th Chinese Control Conference (CCC), 2015-September, pp. 3367–3372 (2015). https://doi.org/10.1109/ChiCC.2015.7260159

  9. Huang, Y., Wang, T., Wang, J., Ma, K., Zhang, C., Huang, X.: Extended fuzzy adaptive event-triggered compensation control for uncertain nonlinear systems with input hysteresis. IEEE Access 7, 89658–8966 (2019). https://doi.org/10.1109/ACCESS.2019.2926280

    Article  Google Scholar 

  10. Quang L., Putov V., Sheludko V., Kuznetsov A., Chernyshev M.: Adaptive robust control of an uncertain multi-degree-of-freedom elastically deformable electromechanical plant with adaptive compensation for an unknown disturbance. In: 10th Mediterranean Conference on Embedded Computing (MECO), pp 1–6 (2021). https://doi.org/10.1109/MECO52532.2021.9460305

  11. Xu, Z., Li, L., Yao, J., Hu, X., Liu, Q., Xie, N.: State constraint control for uncertain nonlinear systems with disturbance compensation. IEEE Access 7, 155251–155261 (2019). https://doi.org/10.1109/ACCESS.2019.2947629

    Article  Google Scholar 

  12. Ortega J.: Matrix Theory. Springer US (1987). https://doi.org/10.1007/978-1-4899-0471-3

  13. Utkin, V.: Sliding Modes in Control and Optimization. Springer, Berlin (1992). https://doi.org/10.1007/978-3-642-84379-2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Van Chuong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cuong, N.T.N., Chuong, L.V., Anh, M.T. (2022). Robust Adaptive Controller for a Class of Uncertain Nonlinear Systems with Disturbances. In: Banerjee, S., Saha, A. (eds) Nonlinear Dynamics and Applications. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-99792-2_59

Download citation

Publish with us

Policies and ethics