Skip to main content

Mechanical Properties of a Novel Device for Treatment of Neuropathy

  • Conference paper
  • First Online:
Advances in Manufacturing III (MANUFACTURING 2022)

Abstract

This paper presents an analysis of the mechanical properties of the novel device, which is used in the treatment of neuropathy. According to the human anatomy, a model of this device was designed taking into account the characteristic dimensions. The survey was conducted using Solid Works. The results of the conducted research provide information about the structural strength of the device under a given load. The values of stresses and displacements were determined by finite element simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burns, T.M., Mauermann, M.L.: The evaluation of polyneuropathies, Neurology 76(7 Supplement 2), S6–S13 (2011)

    Google Scholar 

  2. Torpy, J.M., Kincaid, J.L., Glass, R.M.: Patient page: peripheral neuropathy. J. Am. Med. Assoc. 303(15), 1556 (2010)

    Article  Google Scholar 

  3. Szczyrba, S., Kozera, G., Bieniaszewski, L., Nyka, W.M.: Diabetic neuropathy - pathogenesis, diagnosis, prevention, treatment (in polish: Neuropatia cukrzycowa – patogeneza, rozpoznawanie, zapobieganie, leczenie), Klinika Neurologii Dorosłych Gdańskiego Uniwersytetu Medycznego, Gdańsk (2010)

    Google Scholar 

  4. Mavroidis, C., Nikitczuk, J., Weinberg, B., Danaher, G., Jensen, K., Pelletier, P.: Smart portable rehabilitation devices, Department of Mechanical & Industrial Engineering Northeastern University, Boston (2005)

    Google Scholar 

  5. Zhu, G., Zeng, X., Zhang, M., et al.: Robot-assisted ankle rehabilitation for the treatment of drop foot: a case study. In: Mechatronic and Embedded Systems and Applications (MESA), IEEE, pp. 1–5 (2016)

    Google Scholar 

  6. Pieber, K., Herceg, M., Paternostro-Sluga, T.: Electrotherapy for the treatment of painful diabetic peripheral neuropathy: a review. J. Rehabil. Med. 42, 289–295 (2010)

    Article  Google Scholar 

  7. Brzeziński, K.: Chemotherapy-induced peripheral neuropathy. Part II. Prevention (in polish: Obwodowa neuropatia wywołana chemioterapią. Część II. Zapobieganie), Współczesna Onkologia 16(3), 262–265 (2012)

    Google Scholar 

  8. Geda, H., Kuliberda, A., Stręk, T.: Finite element analysis of natural frequencies and mode shapes of the da Vinci medical robot arm. Vibrat. Phys. Syst. 31(2), 2020205 (2020)

    Google Scholar 

  9. Bower, A.F.: Applied Mechanics of Solids, CRC Press, Taylor & Francis Group, Boca Raton (2010)

    Google Scholar 

  10. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method. Butterworth-Heinemann, Oxford (2000)

    MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by grants of the Ministry of Education and Science in Poland: 0612/SBAD/3576 (2021/2022). The simulations have been carried out at the Institute of Applied Mechanics, Poznan University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agata Kuliberda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kuliberda, A., Stręk, T. (2022). Mechanical Properties of a Novel Device for Treatment of Neuropathy. In: Gorski, F., Rychlik, M., Păcurar, R. (eds) Advances in Manufacturing III. MANUFACTURING 2022. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-99769-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99769-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99768-7

  • Online ISBN: 978-3-030-99769-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics