Skip to main content

Leveraging Transformer Self Attention Encoder for Crisis Event Detection in Short Texts

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13186))

Included in the following conference series:

Abstract

Analyzing content generated on social media has proven to be a powerful tool for early detection of crisis-related events. Such an analysis may allow for timely action, mitigating or even preventing altogether the effects of a crisis. However, the high noise levels in short texts present in microblogging platforms, combined with the limited publicly available datasets have rendered the task difficult. Here, we propose deep learning models based on a transformer self-attention encoder, which is capable of detecting event-related parts in a text, while also minimizing potential noise levels. Our models’ efficacy is shown by experimenting with CrisisLexT26, achieving up to \(81.6\%\) f1-score and \(92.7\%\) AUC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crisis-event-detection-in-short-texts - implementation. https://github.com/M4D-MKLab-ITI/Crisis-Event-Detection-in-Short-Texts

  2. Bert for masked lm (2020). shorturl.at/drRV4

    Google Scholar 

  3. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. Stat 1050, 21 (2016)

    Google Scholar 

  4. Burel, G., Alani, H.: Crisis event extraction service (crees)-automatic detection and classification of crisis-related content on social media (2018)

    Google Scholar 

  5. Burel, G., Saif, H., Alani, H.: Semantic wide and deep learning for detecting crisis-information categories on social media. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 138–155. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4_9

    Chapter  Google Scholar 

  6. Caragea, C., Silvescu, A., Tapia, A.H.: Identifying informative messages in disaster events using convolutional neural networks. In: International Conference on Information Systems for Crisis Response and Management, pp. 137–147 (2016)

    Google Scholar 

  7. Chen, J., Hu, Y., Liu, J., Xiao, Y., Jiang, H.: Deep short text classification with knowledge powered attention. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 6252–6259 (2019)

    Google Scholar 

  8. Chen, Y., Xu, L., Liu, K., Zeng, D., Zhao, J.: Event extraction via dynamic multi-pooling convolutional neural networks. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 167–176 (2015)

    Google Scholar 

  9. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  10. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12(ARTICLE), 2493–2537 (2011)

    Google Scholar 

  11. Conneau, A., et al.: Unsupervised cross-lingual representation learning at scale. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 8440–8451 (2020)

    Google Scholar 

  12. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019)

    Google Scholar 

  13. Feng, X., Qin, B., Liu, T.: A language-independent neural network for event detection. Sci. China Inf. Sci. 61(9), 1–12 (2018). https://doi.org/10.1007/s11432-017-9359-x

    Article  Google Scholar 

  14. Feng, Y., Cheng, Y.: Short text sentiment analysis based on multi-channel CNN with multi-head attention mechanism. IEEE Access 9, 19854–19863 (2021)

    Article  Google Scholar 

  15. Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional sequence to sequence learning. In: International Conference on Machine Learning, pp. 1243–1252. PMLR (2017)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  17. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  18. Hong, Y., Zhang, J., Ma, B., Yao, J., Zhou, G., Zhu, Q.: Using cross-entity inference to improve event extraction. In: Proceedings of the 49th annual meeting of the association for computational linguistics: human language technologies, pp. 1127–1136 (2011)

    Google Scholar 

  19. Kabir, M.Y., Madria, S.: A deep learning approach for tweet classification and rescue scheduling for effective disaster management. In: Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 269–278 (2019)

    Google Scholar 

  20. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746–1751. Association for Computational Linguistics, Doha, Qatar, October 2014. https://doi.org/10.3115/v1/D14-1181, https://www.aclweb.org/anthology/D14-1181

  21. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015 (2015)

    Google Scholar 

  22. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  23. Li, Q., Ji, H., Hong, Y., Li, S.: Constructing information networks using one single model. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1846–1851 (2014)

    Google Scholar 

  24. Li, Q., Ji, H., Huang, L.: Joint event extraction via structured prediction with global features. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 73–82 (2013)

    Google Scholar 

  25. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)

  26. Liu, S., Chen, Y., Liu, K., Zhao, J.: Exploiting argument information to improve event detection via supervised attention mechanisms. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1789–1798 (2017)

    Google Scholar 

  27. Liu, Y., et al.: Roberta: A robustly optimized Bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  28. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  29. Nguyen, D., Al Mannai, K.A., Joty, S., Sajjad, H., Imran, M., Mitra, P.: Robust classification of crisis-related data on social networks using convolutional neural networks. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 11 (2017)

    Google Scholar 

  30. Nguyen, T., Grishman, R.: Graph convolutional networks with argument-aware pooling for event detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  31. Nguyen, T.H., Cho, K., Grishman, R.: Joint event extraction via recurrent neural networks. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 300–309 (2016)

    Google Scholar 

  32. Nguyen, T.H., Grishman, R.: Event detection and domain adaptation with convolutional neural networks. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pp. 365–371 (2015)

    Google Scholar 

  33. Olteanu, A., Vieweg, S., Castillo, C.: What to expect when the unexpected happens: Social media communications across crises. In: Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing (2015)

    Google Scholar 

  34. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from tree-structured long short-term memory networks. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 1556–1566 (2015)

    Google Scholar 

  35. Vaswani, A., et al.: Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 6000–6010 (2017)

    Google Scholar 

  36. Yan, H., Jin, X., Meng, X., Guo, J., Cheng, X.: Event detection with multi-order graph convolution and aggregated attention. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 5770–5774 (2019)

    Google Scholar 

Download references

Acknowledgements

This research has received funding from the European Union’s H2020 research and innovation programme as part of the INFINITY (GA No 883293) and AIDA (GA No 883596) projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pantelis Kyriakidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kyriakidis, P., Chatzakou, D., Tsikrika, T., Vrochidis, S., Kompatsiaris, I. (2022). Leveraging Transformer Self Attention Encoder for Crisis Event Detection in Short Texts. In: Hagen, M., et al. Advances in Information Retrieval. ECIR 2022. Lecture Notes in Computer Science, vol 13186. Springer, Cham. https://doi.org/10.1007/978-3-030-99739-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99739-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99738-0

  • Online ISBN: 978-3-030-99739-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics