Donthu, N., Gustafsson, A.: Effects of COVID-19 on business and research (2020)
Google Scholar
Krishnamurthy, S.: The future of business education: a commentary in the shadow of the COVID-19 pandemic. J. Bus. Res. 117, 1–5 (2020)
CrossRef
Google Scholar
Nigam, K., Lafferty, J., McCallum, A.: Using maximum entropy for text classification. In: IJCAI 1999 Workshop on Machine Learning for Information Filtering, vol. 1, pp. 61–67. Stockholom, Sweden (1999)
Google Scholar
Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text classification using string kernels. J. Mach. Learn. Res. 2(Feb), 419–444 (2002)
Google Scholar
McCallum, A., Nigam, K., et al.: A comparison of event models for Naive Bayes text classification. In: AAAI 1998 Workshop on Learning for Text Categorization, vol. 752, pp. 41–48. Citeseer (1998)
Google Scholar
Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text classification. arXiv preprint. arXiv:1607.01759 (2016)
Lai, S., Liu, K., He, S., Zhao, J.: How to generate a good word embedding. IEEE Intell. Syst. 31(6), 5–14 (2016)
CrossRef
Google Scholar
Cuevas, A., Febrero, M., Fraiman, R.: An anova test for functional data. Comput. Stat. Data Anal. 47(1), 111–122 (2004)
MathSciNet
CrossRef
Google Scholar
Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chem. Intell. Lab. Syst. 2(1–3), 37–52 (1987)
CrossRef
Google Scholar
Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)
CrossRef
Google Scholar
Bergman, S.: The Kernel Function and Conformal Mapping, vol. 5. American Mathematical Society (1970)
Google Scholar
Zimmerman, D.W., Zumbo, B.D.: Relative power of the Wilcoxon test, the Friedman test, and repeated-measures anova on ranks. J. Exp. Educ. 62(1), 75–86 (1993)
CrossRef
Google Scholar