Beaufays, F.S., Chen, M., Mathews, R., Ouyang, T.: Federated learning of out-of-vocabulary words (2019)
Google Scholar
Cantiello, P., Di Martino, B., Mastroianni, M., Cante, L.C., Graziano, M.: Towards a cloud model choice evaluation: comparison between cost/features and ontology-based analysis. Int. J. Grid Util. Comput. (2022, article published/in press). http://hdl.handle.net/2122/15035
Chishti, S.O.A., Riaz, S., BilalZaib, M., Nauman, M.: Self-driving cars using CNN and Q-learning. In: 2018 IEEE 21st International Multi-Topic Conference (INMIC), pp. 1–7. IEEE (2018)
Google Scholar
Di Martino, B., Colucci Cante, L., Graziano, M., Enrich Sard, R.: Tweets analysis with big data technology and machine learning to evaluate smart and sustainable urban mobility actions in Barcelona. In: Barolli, L., Poniszewska-Maranda, A., Enokido, T. (eds.) CISIS 2020. AISC, vol. 1194, pp. 510–519. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-50454-0_53
CrossRef
Google Scholar
Di Martino, B., Cascone, D., Colucci Cante, L., Esposito, A.: Semantic representation and rule based patterns discovery and verification in eProcurement business processes for eGovernment. In: Barolli, L., Yim, K., Enokido, T. (eds.) CISIS 2021. LNNS, vol. 278, pp. 667–676. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79725-6_67
CrossRef
Google Scholar
Di Martino, B., Esposito, A.: Applying patterns to support deployment in cloud-edge environments: a case study. In: Barolli, L., Woungang, I., Enokido, T. (eds.) AINA 2021. LNNS, vol. 227, pp. 139–148. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75078-7_15
CrossRef
Google Scholar
Goericke, S.: Using convolution neural networks to develop robust combat behaviors through reinforcement learning. Ph.D. thesis, Naval Postgraduate School (2021)
Google Scholar
He, C., Annavaram, M., Avestimehr, S.: Group knowledge transfer: federated learning of large CNNs at the edge. arXiv preprint arXiv:2007.14513 (2020)
Kwasigroch, A., Jarzembinski, B., Grochowski, M.: Deep CNN based decision support system for detection and assessing the stage of diabetic retinopathy. In: 2018 International Interdisciplinary PhD Workshop (IIPhDW), pp. 111–116. IEEE (2018)
Google Scholar
Lu, Y., Fan, L.: An efficient and robust aggregation algorithm for learning federated CNN. In: Proceedings of the 2020 3rd International Conference on Signal Processing and Machine Learning, pp. 1–7 (2020)
Google Scholar
Thapa, C., Chamikara, M.A.P., Camtepe, S., Sun, L.: SplitFed: when federated learning meets split learning. arXiv preprint arXiv:2004.12088 (2020)
Thapa, C., Chamikara, M.A.P., Camtepe, S.A.: Advancements of federated learning towards privacy preservation: from federated learning to split learning. In: Rehman, M.H., Gaber, M.M. (eds.) Federated Learning Systems. SCI, vol. 965, pp. 79–109. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-70604-3_4
CrossRef
Google Scholar
Truex, S., et al.: A hybrid approach to privacy-preserving federated learning. In: Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security, pp. 1–11 (2019)
Google Scholar
Wang, S.C.: Artificial neural network. In: Interdisciplinary Computing in Java Programming, pp. 81–100. Springer, Cham (2003). https://doi.org/10.1007/978-1-4615-0377-4_5
Zhang, Z.: Artificial neural network. In: Multivariate Time Series Analysis in Climate and Environmental Research, pp. 1–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67340-0_1