Skip to main content

Digital Twins for Autonomic Cloud Application Management

  • 398 Accesses

Part of the Lecture Notes in Networks and Systems book series (LNNS,volume 451)


Cloud applications are distributed in nature, and it is challenging to orchestrate an application across different Cloud providers and for the different capabilities along the Cloud continuum, from the centralized data centers to the edge of the network. Furthermore, optimal dynamic reconfiguration of an application often takes more time than available at runtime. The approach presented in this paper uses a concurrent simulation model of the application that is continuously updated with real-time monitoring data, optimizing, and validating deployment reconfiguration decisions prior to enacting them for the running applications. This enables proactive decisions to be taken for a future time point, thereby allowing ample time for the reconfiguration actions, as well as realistic Bayesian estimation of the application’s time variate operational parameters for the optimization process.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-99619-2_14
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-99619-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.


  1. 1.

  2. 2.


  1. Arunarani, A.R., Manjula, D., Sugumaran, V.: Task scheduling techniques in cloud computing: a literature survey. Fut. Gener. Comput. Syst. 91, 407–415 (2019).

    CrossRef  Google Scholar 

  2. Agha, G.A.: ACTORS - A Model of Concurrent Computation in Distributed Systems. MIT Press (1990)

    Google Scholar 

  3. Barricelli, B.R., Casiraghi, E., Fogli, D.: A survey on digital twin: definitions, characteristics, applications, and design implications. IEEE Access 7, 167653–167671 (2019).

    CrossRef  Google Scholar 

  4. Beaudry, E., Kabanza, F., Michaud, F.: Planning for concurrent action executions under action duration uncertainty using dynamically generated Bayesian networks. In: Proceedings of the International Conference on Automated Planning and Scheduling, pp. 10–17 (2010)

    Google Scholar 

  5. Bergmayr, A., et al.: A systematic review of cloud modeling languages. ACM Comput. Surv. (CSUR) 51(1), 22:1–22:38 (2018).

  6. Carlin, B.P., Louis, T.A.: Bayesian Methods for Data Analysis. Chapman and Hall/CRC (2008).

  7. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge University Press (2009). ISBN 978-0-521-88438-9.

  8. Floch, J., et al.: Playing MUSIC – building context-aware and self-adaptive mobile applications. Softw. Pract. Exp. 43(3), 359–388 (2013).

    CrossRef  Google Scholar 

  9. Geihs, K., et al.: A comprehensive solution for application-level adaptation. Softw. Pract. Exp. 39(4), 385–422 (2009).

  10. Gilboa, I.: Rational Choice. MIT Press (2010).

  11. Hallsteinsen, S., et al.: A development framework and methodology for self-adapting applications in ubiquitous computing environments. J. Syst. Softw. 85(12), 2840–2859 (2012).

    CrossRef  Google Scholar 

  12. Horn, G., Skrzypek, P.: MELODIC: utility based cross cloud deployment optimisation. In: Proceedings of the 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA), pp. 360–367. IEEE Computer Society (2018).

  13. Horne, G., Schwierz, K.-P.: Summary of data farming. J. Syst. Softw. 5(1), 8–27 (2016).

    CrossRef  Google Scholar 

  14. IBM: An architectural blueprint for autonomic computing, 3rd edn. White Paper, p. 34. IBM (2005).

  15. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core language for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer, Heidelberg (2011).

    CrossRef  Google Scholar 

  16. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Integrating deployment architectures and resource consumption in timed object-oriented models. J. Syst. Softw. 84(1), 67–91 (2015).

    CrossRef  MATH  Google Scholar 

  17. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. J. Syst. Softw. 36(1), 41–50 (2003).

    CrossRef  Google Scholar 

  18. Kephart, J.O., Das, R.: Achieving self-management via utility functions. J. Syst. Softw. 11(1), 40–48 (2007).

    CrossRef  Google Scholar 

  19. Kumar, M., Sharma, S.C., Goel, A., Singh, S.P.: A comprehensive survey for scheduling techniques in cloud computing. J. Netw. Comput. Appl. 143(12), 1–33 (2019).

    CrossRef  Google Scholar 

  20. Lau, K.-K., Wang, Z.: Software component models. J. Syst. Softw. 33(10), 709–724 (2007).

    CrossRef  Google Scholar 

  21. Pezoa, F., Reutter, J.L., Suarez, F., Ugarte, M., Vrgoč, D.: Foundations of JSON schema. In: Proceedings of the 25th International Conference on World Wide Web, WWW 2016, pp. 263–273 (2016).

  22. Muhuri, P.K., Biswas, S.K.: Bayesian optimization algorithm for multi-objective scheduling of time and precedence constrained tasks in heterogeneous multiprocessor systems. Appl. Soft Comput. 92(12), 106274 (2020).

  23. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press (2005).

  24. Sanchez, S.M., Sánchez, P.J.: Better Big Data via data farming experiments. In: Tolk, A., Fowler, J., Shao, G., Yücesan, E. (eds.) Advances in Modeling and Simulation. SFMA, pp. 159–179. Springer, Cham (2017).

  25. Schlatte, R., Johnsen, E.B., Kamburjan, E., Tapia Tarifa, S.L.: Modeling and analyzing resource-sensitive actors: a tutorial introduction. In: Damiani, F., Dardha, O. (eds.) COORDINATION 2021. LNCS, vol. 12717, pp. 3–19. Springer, Cham (2021).

  26. Tao, F., Zhang, H., Liu, A., Nee, A.Y.C.: Digital twin in industry: state-of-the-art. J. Syst. Softw. 15(4), 2405–2415 (2019).

Download references


This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 871643 MORPHEMIC ( Modelling and Orchestrating heterogeneous Resources and Polymorphic applications for Holistic Execution and adaptation of Models In the Cloud.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Geir Horn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Horn, G., Schlatte, R., Johnsen, E.B. (2022). Digital Twins for Autonomic Cloud Application Management. In: Barolli, L., Hussain, F., Enokido, T. (eds) Advanced Information Networking and Applications. AINA 2022. Lecture Notes in Networks and Systems, vol 451. Springer, Cham.

Download citation