Skip to main content

A Watchdog Proposal to a Personal e-Health Approach

  • 334 Accesses

Part of the Lecture Notes in Networks and Systems book series (LNNS,volume 450)

Abstract

During everyday activities, stress and anxiety are considered factors that influence users’ behavior and, if recurrent, can bring different risks to the individual’s health. This work proposes an architecture to assist the users in detecting and controlling emotions during their daily activities. The proposal was implemented using smartbands as body sensors to collect the data, machine learning algorithms to detect moments of stress, and a smartphone app for monitoring the user’s environment. The proposal evaluation was carried out by collecting real data from a user for one year. Based on that, we detected frequency peaks and, using the location information, enriched the data to send recommendations. The results indicates the feasibility of the proposal since it was possible to identify stressful moments considering the environment that the user wanted to be monitored.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-99587-4_8
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-99587-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Hirsch, D.D.: The glass house effect: Big Data, the new oil, and the power of analogy. Me. L. Rev. 66, 373 (2013)

    Google Scholar 

  2. Mukhopadhyay, S.C.: Wearable sensors for human activity monitoring: a review. IEEE Sens. J. 15(3), 1321–1330 (2014)

    CrossRef  Google Scholar 

  3. Kim, H.G., et al.: Stress and heart rate variability: a meta-analysis and review of the literature. Psychiatry Investig. 15(3), 235 (2018)

    CrossRef  Google Scholar 

  4. Dillon, T., Chen, W., Chang, E.: Cloud computing: issues and challenges. In: 24th IEEE International Conference on Advanced Information Networking and Applications, vol. 2010, pp. 27–33. IEEE (2010). https://doi.org/10.1109/AINA.2010.187

  5. Pantelopoulos, A., Bourbakis, N.G.: A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 40(1), 1–12 (2009). https://doi.org/10.1109/TSMCC.2009.2032660

    CrossRef  Google Scholar 

  6. Uddin, M., Khaksar, W., Torresen, J.: Ambient sensors for elderly care and independent living: a survey. Sensors 18(7), 2018 (2027). https://doi.org/10.3390/s18072027

    CrossRef  Google Scholar 

  7. Gorman, J.M., Sloan, R.P.: Heart rate variability in depressive and anxiety disorders. Am. Heart J. 140(4), S77–S83 (2000). https://doi.org/10.1067/mhj.2000.109981

    CrossRef  Google Scholar 

  8. Santhanagopalan, M., Chetty, M., Foale, C., Aryal, S., Klein, B.: Relevance of frequency of heart-rate peaks as indicator of ‘biological’ stress level. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11307, pp. 598–609. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04239-4_54

    CrossRef  Google Scholar 

  9. Ciabattoni, L., et al.: Real-time mental stress detection based on smartwatch. In: 2017 IEEE International Conference on Consumer Electronics (ICCE), pp. 110–111. IEEE (2017). https://doi.org/10.1109/ICCE.2017.7889247

  10. Gomes, E., et al.: A survey from real-time to near real-time applications in fog computing environments. In: Telecom, vol. 2, no. 4. Multidisciplinary Digital Publishing Institute (2021). https://doi.org/10.3390/telecom2040028

  11. Munir, A., Kansakar, P., Khan, S.U.: IFCIoT: Integrated Fog Cloud IoT: a novel architectural paradigm for the future Internet of Things. IEEE Consum. Electron. Mag. 6(3), 74–82 (2017). https://doi.org/10.1109/MCE.2017.2684981

    CrossRef  Google Scholar 

  12. Kiran, M., et al.: Lambda architecture for cost-effective batch and speed big data processing. In: 2015 IEEE International Conference on Big Data (Big Data). IEEE (2015). https://doi.org/10.1109/BigData.2015.7364082

  13. Larcher, L., et al.: Event-driven framework for detecting unusual patterns in AAL environments. In: IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), vol. 2020. IEEE (2020). https://doi.org/10.1109/CBMS49503.2020.00065

  14. Aditya, S., Tibarewala, D.N.: Comparing ANN, LDA, QDA, KNN and SVM algorithms in classifying relaxed and stressful mental state from two-channel prefrontal EEG data. Int. J. Artif. Intell. Soft Comput. 3(2), 143–164 (2012). https://doi.org/10.1504/IJAISC.2012.049010

    CrossRef  Google Scholar 

  15. Deng, R., et al.: Optimal workload allocation in fog-cloud computing toward balanced delay and power consumption. IEEE Internet Things J. 3(6), 1171–1181 (2016). https://doi.org/10.1109/JIOT.2016.2565516

    CrossRef  Google Scholar 

  16. Miloslavskaya, N., Tolstoy, A.: Big data, fast data and data lake concepts. Procedia Comput. Sci. 88, 300–305 (2016). https://doi.org/10.1016/j.procs.2016.07.439

    CrossRef  Google Scholar 

  17. Klein, A., Lehner, W.: Representing data quality in sensor data streaming environments. J. Data Inf. Qual. (JDIQ) 1(2), 1–28 (2009). https://doi.org/10.1145/1577840.1577845

    CrossRef  Google Scholar 

  18. Di iorio Silva, G., Sergio, W.L., Ströele, V., Dantas, M.A.R.: ASAP - Academic Support Aid Proposal for student recommendations. In: Barolli, L., Woungang, I., Enokido, T. (eds.) AINA 2021. LNNS, vol. 226, pp. 40–53. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75075-6_4

    CrossRef  Google Scholar 

  19. Silva, G., et al.: Hold up: Modelo de Detecção e Controle de emoçães em Ambientes Acadêmicos. In: Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação-SBIE), vol. 30, no. 1 (2019). https://doi.org/10.5753/cbie.sbie.2019.139.

  20. Anderson, C.: Docker [software engineering]. IEEE Softw. 32(3), 102-c3 (2015). https://doi.org/10.1109/MS.2015.62

    CrossRef  Google Scholar 

  21. Node-RED. https://nodered.org/. Accessed July 2021

  22. FIND3. https://www.internalpositioning.com/doc/tracking_your_phone.md. Accessed July 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Ströele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Di iorio Silva, G., Sergio, W.L., Ströele, V., Dantas, M.A.R. (2022). A Watchdog Proposal to a Personal e-Health Approach. In: Barolli, L., Hussain, F., Enokido, T. (eds) Advanced Information Networking and Applications. AINA 2022. Lecture Notes in Networks and Systems, vol 450. Springer, Cham. https://doi.org/10.1007/978-3-030-99587-4_8

Download citation