Skip to main content

Millimeter-Wave Dual-Band Slotted Antenna for 5G Applications

  • 342 Accesses

Part of the Lecture Notes in Networks and Systems book series (LNNS,volume 450)

Abstract

This paper presents a millimeter-wave dual-band slotted antenna (26.28/37.72 GHz) for fifth-generation (5G) network. The dielectric layer of the antenna is made of Rogers RT 5880 material and has a thickness of 0.254 mm.

The resonant frequencies of 26.28 GHz and 37.72 GHz, among the most desirable frequency bands for 5G communication in the mobile network, are used in this study. The designed dual-band slotted antenna has an architectural structure of 8 mm × 6mm × 0.254 mm. It achieves a gain of 5.464 dB and 6.705 dB and directivity of 6.18 dBi and 7.538 dBi with the assistance of the Reflection Co-efficient at resonant frequencies of –21.79 dB and –34.55 dB. With bandwidths of 0.867 GHz and 1.054 GHz, the proposed antenna’s efficiency was successfully attained 84.81% and 82.55%, respectively, which is suitable and enough efficient for 5G communication. The Microwave CST Studio Suite tool is used to design and simulate this proposed antenna. According to the intended results, the suggested antenna works excellently, and due to its fundamental architecture, the proposed antenna will be suitable for mobile networks. The designed antenna can be appropriate for faster mobile networks and 5G communication technologies by estimating all the parameters.

Keywords

  • Millimeter-wave
  • Dual-band slotted antenna
  • 5G communication
  • VSWR
  • Gain enhancement
  • CST
  • Networking

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-99587-4_3
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-99587-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

References

  1. Agiwal, M., Roy, A., Saxena, N.: Next-generation 5g wireless networks: a comprehensive survey. IEEE Commun. Surv. Tutor. 18(3), 1617–1655 (2016)

    CrossRef  Google Scholar 

  2. Rappaport, T.S., et al.: Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 1, 335–349 (2013)

    CrossRef  Google Scholar 

  3. Ge, X., Tu, S., Mao, G., Wang, C.-X., Han, T.: 5G ultra-dense cellular networks. IEEE Wirel. Commun. 23(1), 72–79 (2016)

    CrossRef  Google Scholar 

  4. Zhang, J., Shafi, M., Molisch, A.F., Tufvesson, F., Wu, S., Kitao, K.: Channel models and measurements for 5G. IEEE Commun. Mag. 56(12), 12–13 (2018)

    CrossRef  Google Scholar 

  5. Niu, Y., Li, Y., Jin, D., Su, L., Vasilakos, A.V.: A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges. Wireless Netw. 21(8), 2657–2676 (2015)

    CrossRef  Google Scholar 

  6. Morgado, A., Huq, K.M., Mumtaz, S., Rodriguez, J.: A survey of 5G technologies: regulatory, standardization and industrial perspectives. Digit. Commun. Netw. 4(2), 87–97 (2018)

    CrossRef  Google Scholar 

  7. Islam, M.H., Fariya, K.Y., Tanim, M.T.H., Talukder, T.I., Chisty, N.A.: IoT-based smart street light for improved road safety. In: Zhang, Y.-D., Senjyu, T., So-In, C., Joshi, A. (eds.) Smart Trends in Computing and Communications. LNNS, vol. 286, pp. 377–390. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-4016-2_36

    CrossRef  Google Scholar 

  8. Islam, M.H., Fariya, K.Y., Talukder, T.I., Khandoker, A.A., Chisty, N.A.: IoT based smart self power generating street light and road safety system design: a review. In: 2021 IEEE Region 10 Symposium (TENSYMP), pp. 1–5 (2021). https://doi.org/10.1109/TENSYMP52854.2021.9550937

  9. Imran, D., et al.: Millimeter wave microstrip patch antenna for 5G mobile communication. In: 2018 International Conference on Engineering and Emerging Technologies (ICEET), pp. 1–6 (2018). https://doi.org/10.1109/ICEET1.2018.8338623

  10. Balanis, C.A.: Antenna Theory: Analysis and Design, 3rd edn. Wiley-Interscience, Hoboken (2012). ISBN-13: 978-0471667827

    Google Scholar 

  11. Chandra Sekhararao, K., Kavitha, A.: Circularly polarized dual band micro strip patch antenna design at 28 GHz/38 GHz for 5G cellular communication. JCR 7(4) (2020). ISSN 2394-5125

    Google Scholar 

  12. Anab, M., Khattak, M., Owais, S., Ali Khattak, A., Sultan, A.: Design and analysis of millimeter wave dielectric resonator antenna for 5G wireless communication systems. Prog. Electromagn. Res. C 98, 239–255 (2020). https://doi.org/10.2528/pierc19102404

  13. Lodro, Z., Shah, N., Mahar, E., Tirmizi, S.B., Lodro, M.: mmWave novel multiband microstrip patch antenna design for 5G communication. In: 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), pp. 1–4 (2019). https://doi.org/10.1109/ICOMET.2019.8673447

  14. Ibrahim, M.S.: Dual-band microstrip antenna for the fifth generation indoor/outdoor wireless applications. In: 2018 International Applied Computational Electromagnetics Society Symposium (ACES), pp. 1–2 (2018). https://doi.org/10.23919/ROPACES.2018.8364097

  15. Aliakbari, H., Abdipour, A., Mirzavand, R., Costanzo, A., Mousavi, P.: A single feed dual-band circularly polarized millimeter-wave antenna for 5G communication. In: 2016 10th European Conference on Antennas and Propagation (EuCAP), pp. 1–5 (2016). https://doi.org/10.1109/EuCAP.2016.7481318

  16. Sabek, A., Ibrahim, A., Ali, W.: Dual-band millimeter wave microstrip patch antenna with stubresonators for 28/38 GHz applications. J. Phys.: Conf. Ser. 2128(1), 012006 (2021). https://doi.org/10.1088/1742-6596/2128/1/012006

  17. Nosrati, M., Tavassolian, N.: A single feed dual-band, linearly/circularly polarized cross-slot millimeter-wave antenna for future 5G networks. In: 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, pp. 2467–2468 (2017). https://doi.org/10.1109/APUSNCURSINRSM.2017.8073276

  18. CST STUDIO SUITE Student Edition, 3DS Academy (2022). https://edu.3ds.com/en/software/cst-studio-suite-student-edition

  19. Subramanian, S., Selvaperumal, S., Thangasamy, V., Nataraj, C.: Modified triple band microstrip patch antenna for higher 5G bands. In: 2018 Fourth International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-informatics (AEEICB) (2018). https://doi.org/10.1109/aeeicb.2018.8480917

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prince Mahmud Ridoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Ridoy, P.M., Saha, A., Fariya, K.Y., Saha, P., Elme, K.M., Arifin, F. (2022). Millimeter-Wave Dual-Band Slotted Antenna for 5G Applications. In: Barolli, L., Hussain, F., Enokido, T. (eds) Advanced Information Networking and Applications. AINA 2022. Lecture Notes in Networks and Systems, vol 450. Springer, Cham. https://doi.org/10.1007/978-3-030-99587-4_3

Download citation