Argenzio, B., Amatucci, N., Botte, M., D'Acierno, L., Di Costanzo, L., Pariota, L.: The use of automatic vehicle location (AVL) data for improving public transport service regularity. In: Barolli, L., Woungang, I., Enokido, T. (eds.) AINA 2021, vol. 3. LNNS, vol. 227, pp. 667–676. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75078-7_66
Leung, C.K., et al.: Data mining on open public transit data for transportation analytics during pre-COVID-19 era and COVID-19 era. In: Barolli, L., Li, K.F., Miwa, H. (eds.) INCoS 2020. AISC, vol. 1263, pp. 133–144. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-57796-4_13
Xhafa, F., Aly, A., Juan, A.A.: Optimization of task allocations in cloud to fog environment with application to intelligent transportation systems. In: Barolli, L., Woungang, I., Enokido, T. (eds.) AINA 2021, vol. 1. LNNS, vol. 225, pp. 1–12. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75100-5_1
Leung, C.K.-S., Tanbeer, S.K., Cameron, J.J.: Interactive discovery of influential friends from social networks. Social Netw. Anal. Min. 4(1), 154:1–154:13 (2014). https://doi.org/10.1007/s13278-014-0154-z
Leung, C.K., et al.: Parallel social network mining for interesting ‘following’ patterns. Concurr. Computat. Pract. Exp. 28(15), 3994–4012 (2016)
CrossRef
Google Scholar
Honda, M., Toshima, J., Suganuma, T., Takahashi, A.: Design of healthcare information sharing methods using range-based information disclosure incentives. In: Barolli, L., Woungang, I., Enokido, T. (eds.) AINA 2021, vol. 1. LNNS, vol. 225, pp. 758–769. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75100-5_64
Leung, C.K., Kaufmann, T.N., Wen, Y., Zhao, C., Zheng, H.: Revealing COVID-19 data by data mining and visualization. In: Barolli, L., Chen, H.-C., Miwa, H. (eds.) INCoS 2021. LNNS, vol. 312, pp. 70–83. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-84910-8_8
Souza, J., Leung, C.K., Cuzzocrea, A.: An Innovative big data predictive analytics framework over hybrid big data sources with an application for disease analytics. In: Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds.) AINA 2020. AISC, vol. 1151, pp. 669–680. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44041-1_59
CrossRef
Google Scholar
Braun, P., et al.: Game data mining: clustering and visualization of online game data in cyber-physical worlds. Proc. Comput. Sci. 112, 2259–2268 (2017)
CrossRef
Google Scholar
Anderson-Gregoire, I.M., et al.: A big data science solution for analytics on moving objects. In: Barolli, L., Woungang, I., Enokido, T. (eds.) AINA 2021, vol. 2. LNNS, vol. 226, pp. 133–145. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75075-6_11
Atif, F., Rodriguez, M., Araujo, L.J.P., Amartiwi, U., Akinsanya, B.J., Mazzara, M.: A survey on data science techniques for predicting software defects. In: Barolli, L., Woungang, I., Enokido, T. (eds.) AINA 2021, vol. 3. LNNS, vol. 227, pp. 298–309. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75078-7_31
Aggarwal, C.C.: Data Mining: The Textbook. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14142-8
Leung, C.K., et al.: Distributed uncertain data mining for frequent patterns satisfying anti-monotonic constraints. In: IEEE AINA Workshops 2014, pp. 1–6 (2014)
Google Scholar
Leung, C.K., et al.: Fast algorithms for frequent itemset mining from uncertain data. In: IEEE ICDM 2014, pp. 893–898 (2014)
Google Scholar
Liu, C., Li, X.: Mining method based on semantic trajectory frequent pattern. In: Barolli, L., Woungang, I., Enokido, T. (eds.) AINA 2021, vol. 2. LNNS, vol. 226, pp. 146–159. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75075-6_12
Ni, J., Yin, W., Jiang, Y., Zhao, J., Hu, Y.: Periodic mining of traffic information in industrial control networks. In: Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds.) AINA 2020. AISC, vol. 1151, pp. 176–183. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44041-1_16
CrossRef
Google Scholar
Ngaffo, A.N., El Ayeb, W., Choukair, Z.: An IP multimedia subsystem service discovery and exposure approach based on opinion mining by exploiting Twitter trending topics. In: Barolli, L., Takizawa, M., Xhafa, F., Enokido, T. (eds.) AINA 2019. AISC, vol. 926, pp. 431–445. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-15032-7_37
Ahn, S., et al.: A fuzzy logic based machine learning tool for supporting big data business analytics in complex artificial intelligence environments. In: FUZZ-IEEE 2019, pp. 1259–1264 (2019)
Google Scholar
Leung, C.K.: Mathematical model for propagation of influence in a social network. In: Alhajj, R., Rokne, J. (eds) Encyclopedia of Social Network Analysis and Mining, 2nd edn., pp. 1261–1269. Springer, New York (2018). https://doi.org/10.1007/978-1-4939-7131-2_110201
Shu, K., et al.: Fake news detection on social media: a data mining perspective. ACM SIGKDD Explorat. 19(1), 22–36 (2017)
CrossRef
Google Scholar
Whittaker, J.P.: Tech Giants, Artificial Intelligence and the Future of Journalism. Routledge, New York (2019)
CrossRef
Google Scholar
Christin, A.: Metrics at Work: Journalism and the Contested Meaning of Algorithms. Princeton University Press (2020)
Google Scholar
Sriram, S.: An Evaluation of Text Representation Techniques for Fake News Detection Using: TF-IDF, Word Embeddings, Sentence Embeddings with Linear Support Vector Machine. M.Sc. Dissertation, Technological University Dublin (2020). https://doi.org/10.21427/5519-h979
Hartley, K., Vu, M.K.: Fighting fake news in the COVID-19 era: policy insights from an equilibrium model. Policy Sci. 53(4), 735–758 (2020). https://doi.org/10.1007/s11077-020-09405-z
CrossRef
Google Scholar
Horne, B.D., Adah, S.: This just in: fake news packs a lot in title, uses simpler, repetitive content in text body, more similar to satire than real news. In: ICWSM 2017 Workshop W7 on NECO, pp. 759–766 (2017). https://aaai.org/ocs/index.php/ICWSM/ICWSM17/paper/view/15772/14898
Ibrishimova M.D., Li K.F.: A machine learning approach to fake news detection using knowledge verification and natural language processing. In: Barolli L., Nishino H., Miwa H. (eds) INCoS 2019. AISC, vol. 1035, pp. 223–234. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29035-1_22
Shu, K., et al.: Mining disinformation and fake news: concepts, methods, and recent advancements. In: Disinformation, Misinformation, and Fake News in Social Media, pp. 1–19 (2020)
Google Scholar
Pérez-Rosas, V., et al.: Automatic detection of fake news. In: COLING 2018, pp. 3391–3401 (2018). https://aclanthology.org/C18-1287
Pei, J., et al.: Mining sequential patterns by pattern-growth: the PrefixSpan approach. IEEE TKDE 16(11), 1424–1440 (2004)
Google Scholar
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. JMLR 12, 2825–2830 (2011)
MathSciNet
MATH
Google Scholar