Meddeb, A.: Internet of things standards: who stands out from the crowd? IEEE Commun. Mag. 54(7), 40–47 (2016)
CrossRef
Google Scholar
Buratti, C., Verdone, R.: Performance analysis of IEEE 802.15.4 non beacon-enabled mode. IEEE Trans. Veh. Technol. 58(7), 3480–3493 (2009)
CrossRef
Google Scholar
Ghose, D., Li, F.Y., Pla, V.: MAC protocols for wake-up radio: principles, modeling and performance analysis. IEEE Trans. Industr. Inf. 14(5), 2294–2306 (2018)
CrossRef
Google Scholar
Ghose, D., Li, F.Y.: Enabling Backoff for SCM Wake-Up Radio: protocol and modeling. IEEE Commun. Lett. 21(5), 1031–1034 (2017). https://doi.org/10.1109/LCOMM.2017.2653779
CrossRef
Google Scholar
Spenza, D., Magno, M., Basagni, S., Benini, L., Paoli, M., Petrioli, C.: Beyond duty cycling: Wake-up radio with selective awakenings for long-lived wireless sensing systems. In: 2015 IEEE Conference on Computer Communications (INFOCOM), pp. 522–530 (2015)
Google Scholar
Ait Aoudia, F., Gautier, M., Berder, O.: OPWUM: opportunistic MAC protocol leveraging wake-up receivers in WSNs. J. Sens. (2016). Hindawi Publishing Corporation
Google Scholar
Liebeherr, J., Wrege, D.E., Ferrari, D.: Exact admission control for networks with a bounded delay service. IEEE/ACM Trans. Networking 4(6), 885–901 (1996)
CrossRef
Google Scholar
Guck, J.W., Reisslein, M., Kellerer, W.: Function split between delay-constrained routing and resource allocation for centrally managed QoS in industrial networks. IEEE Trans. Industr. Inf. 12(6), 2050–2061 (2016)
CrossRef
Google Scholar
Oller, J., Demirkol, I., Casademont, J., Paradells, J., Gamm, G.U., Reindl, L.: Has time come to switch from duty-cycled MAC protocols to wake-up radio for wireless sensor networks? IEEE/ACM Trans. Networking 24(2), 674–687 (2016)
CrossRef
Google Scholar
IEEE standard for low-rate wireless networks. In: IEEE Std 802.15.4-2015 (Revision of IEEE Std 802.15.4-2011), pp. 1–709, 22 April 2016
Google Scholar
Kozłowski, A., Sosnowski, J.: Energy efficiency trade-off between duty-cycling and wake-up radio techniques in IoT networks. Wireless Pers. Commun. 107(4), 1951–1971 (2019). https://doi.org/10.1007/s11277-019-06368-0
CrossRef
Google Scholar
Kiran, M.P.R.S., Rajalakshmi, P.: Performance analysis of CSMA/CA and PCA for time critical industrial IoT applications. IEEE Trans. Industr. Inf. 14(5), 2281–2293 (2018)
CrossRef
Google Scholar
Ghribi, M., Meddeb, A.: Survey and taxonomy of MAC, routing and cross layer protocols using wake-up radio. J. Network Comput. Appl. 149, 102465 (2020)
CrossRef
Google Scholar
Ghribi, M., Meddeb, A.: Performance evaluation of collision avoidance techniques using wake-up radio in WSNs. In: 2020 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), pp. 1–6 (2020)
Google Scholar
Nandi S., Yadav A. (2011) Adaptation of MAC Layer for QoS in WSN. Wyld, D.C., Wozniak, M., Chaki, N., Meghanathan, N., Nagamalai, D. (eds.): NeCoM/WeST/WiMoN -2011. CCIS, vol. 197. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22543-7
Watteyne, T., Tuset-Peiro, P., Vilajosana, X., Pollin, S., Krishnamachari, B.: Teaching communication technologies and standards for the industrial IoT? Use 6TiSCH! IEEE Commun. Mag. 55(5), 132–137 (2017)
CrossRef
Google Scholar
AMS : AS3933 3D Low Frequency Wakeup Receiver. AMS Datasheet (2015)
Google Scholar