Skip to main content

An Energy Consumption Model of Servers to Make Virtual Machines Migrate

Part of the Lecture Notes in Networks and Systems book series (LNNS,volume 449)

Abstract

It is critical to reduce the electric energy consumption of information systems to realize green societies. In this paper, we discuss the migration approach to reducing the energy consumption of servers by taking advantage of live migration technologies of virtual machines. We propose a VM (Virtual machine Migration) algorithm to make virtual machines migrate from a host server to a guest server so that the total energy consumption of the servers can be reduced. In the evaluation, we show the total energy consumption of servers in a cluster can be reduced in the VM algorithm compared with other algorithms.

Keywords

  • Server selection algorithm
  • Migration of virtual machines
  • Green computing systems
  • Estimation algorithm

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-99584-3_3
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-99584-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

References

  1. KVM: Main Page - KVM (Kernel Based Virtual Machine) (2015). http://www.linux-kvm.org/page/Mainx_Page

  2. Dayarathna, M., Wen, Y., Fan, R.: Data center energy consumption modelling: a survey. IEEE Commun. Surv. Tutorials 18(1), 732–787 (2016)

    CrossRef  Google Scholar 

  3. Enokido, T., Aikebaier, A., Takizawa, M.: Process allocation algorithms for saving power consumption in peer-to-peer systems. IEEE Trans. Ind. Electron. 58(6), 2097–2105 (2011)

    CrossRef  Google Scholar 

  4. Enokido, T., Aikebaier, A., Takizawa, M.: A model for reducing power consumption in peer-to-peer systems. IEEE Syst. J. 4(2), 221–229 (2010)

    CrossRef  Google Scholar 

  5. Enokido, T., Aikebaier, A., Takizawa, M.: An extended simple power consumption model for selecting a server to perform computation type processes in digital ecosystems. IEEE Trans. Ind. Inform. 10(2), 1627–1636 (2014)

    CrossRef  Google Scholar 

  6. Enokido, T., Takizawa, M.: Integrated power consumption model for distributed systems. IEEE Trans. Ind. Electron. 60(2), 824–836 (2013)

    CrossRef  Google Scholar 

  7. Enokido, T., Takizawa, M.: An energy-efficient load balancing algorithm to perform computation type application processes for virtual machine. In: Proceedings of the 18th International Conference on Network-Based Information Systems (NBiS-2016), pp. 32–39 (2015)

    Google Scholar 

  8. Enokido, T., Takizawa, M.: Power consumption and computation models of virtual machines to perform computation type application processes. In: Proceedings of the 9th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS-2015), pp. 126–133 (2015)

    Google Scholar 

  9. Enokido, T., Duolikun, D., Takizawa, M.: An energy efficient load balancing algorithm based on the active time of cores. In: Proceedings of the 12th International Conference on Broad-Band Wireless Computing, Communication and Applications (BWCCA-2017), pp. 185–196 (2017). https://doi.org/10.1007/978-3-319-69811-3_16

  10. Enokido, T., Duolikun, D., Takizawa, M.: The energy consumption laxity-based algorithm to perform computation processes in virtual machine environments. Int. J. Grid Util. Comput. 10(5), 545–555 (2019)

    CrossRef  Google Scholar 

  11. Enokido, T., Duolikun, D., Takizawa, M.: The improved redundant active time-based (IRATB) algorithm for process replication. In: Proceedings of the 35th International Conference on Advanced Information Networking and Applications (AINA-2021), pp. 172–180 (2021). https://doi.org/10.1007/978-3-030-75100-5_16

  12. Enokido, T., Duolikun, D., Takizawa, M.: The redundant active time-based algorithm with forcing meaningless replica to terminate. In: Proceedings of the 15th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS-2021), pp. 216–213 (2021)

    Google Scholar 

  13. Enokido, T., Duolikun, D., Takizawa, M.: The improved redundant active time-based algorithm with forcing termination of meaningless replicas in virtual machine environments. In: Proceedings of the 24th International Conference on Network-Based Systems (NBiS-2021), pp. 50–58 (2021)

    Google Scholar 

  14. Kataoka, H., Duolikun, D., Enokido, T., Takizawa, M.: Energy-efficient virtualisation of threads in a server cluster. In: Proceedings of the 10th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA-2015), pp. 288–295 (2015)

    Google Scholar 

  15. Kataoka, H., Duolikun, D., Sawada, A., Enokido, T., Takizawa, M.: Energy-aware server selection algorithms in a scalable cluster. In: Proceedings of IEEE the 30th International Conference on Advanced Information Networking and Applications (AINA-2016), pp. 565–572 (2016)

    Google Scholar 

  16. Kataoka, H., Sawada, A., Dilawaer, D., Enokido, T., Takizawa, M.: Multi-level power consumption and computation models and energy-efficient server selection algorithms in a scalable cluster. In: Proceedings of the 19th International Conference on Network-Based Information Systems (NBiS-2016), pp. 210–217 (2016)

    Google Scholar 

  17. Kataoka, H., Nakamura, S., Duolikun, D., Enokido, T., Takizawa, M.: Multi-level power consumption model and energy-aware server selection algorithm. Int. J. Grid Util. Comput. 8(3), 201–210 (2017)

    CrossRef  Google Scholar 

  18. Duolikun, D., Enokido, T., Takizawa, M.: Static and dynamic group migration algorithms of virtual machines to reduce energy consumption of a server cluster. In: Transactions on Computational Collective Intelligence, vol. XXXIII, pp. 144–166 (2019)

    Google Scholar 

  19. Duolikun, D., Enokido, T., Takizawa, M.: Simple algorithms for selecting an energy-efficient server in a cluster of servers. Int. J. Commun. Netw. Distrib. Syst. 21(1), 1–25 (2018)

    Google Scholar 

  20. Duolikun, D., Enokido, T., Hsu, H.H., Takizawa, M.: Asynchronous migration of process replicas in a cluster. In: Proceedings of IEEE the 29th International Conference on Advanced Information Networking and Applications (AINA-2015), pp. 271–279 (2015)

    Google Scholar 

  21. Duolikun, D., Watanabe, R., Enokido, T., Takizawa, M.; An eco migration algorithm of virtual machines in a server cluster. In: Proceedings of IEEE the 32nd International Confernce on Advanced Information Networking and Applications (AINA-2015), pp. 189–196 (2018)

    Google Scholar 

  22. Duolikun, D., Enokido, T., Takizawa, M.: Energy-efficient group migration of virtual machines in a cluster. In: Proceedings of the 33rd International Conference on Advanced Information Networking and Applications (AINA-2019), pp. 145–155 (2019). https://doi.org/10.1007/978-3-030-15032-7_12

  23. Duolikun, D., Enokido, T., Barolli, L., Takizawa, M.: A monotonically increasing (MI) algorithm to estimate energy consumption and execution time of processes on a server. In: Barolli, L., Chen, H.-C., Enokido, T. (eds.) NBiS 2021. LNNS, vol. 313, pp. 1–12. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-84913-9_1

  24. Duolikun, D., Enokido, T., Barolli, L., Takizawa, M.: An energy-efficient algorithm to make virtual machines migrate in a server cluster. In: Proceeding of the 21st International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA-2021), pp. 25–26 (2021)

    Google Scholar 

  25. Duolikun, D., Enokido, T., Barolli, L., Takizawa, M.: An energy-efficient algorithm to make virtual machines migrate in a server cluster, accepted at In: Proceedings of the 10th International Conference on Emerging Internet, Data and Web Technologies (EIDWT-2022) (2022)

    Google Scholar 

  26. Inoue, T., Aikebaier, A., Enokido, T., Takizawa, M.: Algorithms for selecting energy-efficient storage servers in storage and computation oriented applications. In: Proceeding of IEEE the 26th International Conference on Advanced Information Networking and Applications (AINA-2016), pp. 920–927 (2016)

    Google Scholar 

  27. Noaki, N., Saitto, T., Duolikun, D., Enokido, T., Takizawa, M.: An energy-efficient algorithm for virtual machines to migrate considering migration time. In: Proceedings of the 15th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA-2020), pp. 341–354 (2020). https://doi.org/10.1007/978-3-030-61108-8_34

  28. Noguchi, K., Saito, T., Duolikun, D., Enokido, T., Takizawa, T.: An algorithm to select a server to minimize the total energy consumption of a cluster. In: Proceedings of the 15th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGiC-2020), pp. 18–28 (2020). https://doi.org/10.1007/978-3-030-61105-7_3

  29. Natural Resources Defense Council (NRDS): Data center efficiency assessment - scaling up energy efficiency across the data center industry: Evaluating key drivers and barriers. http://www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf (2014)

  30. Watanabe, R., Duolikun, D., Enokido, T., Takizawa, M.: An eco model of process migration with virtual machines. In: Proceedings of the 19th International Conference on Network-Based Information Systems (NBiS-2016), pp. 292–297 (2016)

    Google Scholar 

  31. Watanabe, R., Duolikun, D., Takizawa, M.: Simple estimation and energy-aware migration models of virtual machines in a server cluster. Concurr. Comput. Pract. Exper. 30(21), e4771 (2018)

    Google Scholar 

  32. Oma, R., Nakamura, S., Duolikun, D., Enokido, T., Takizawa, M.: An energy-efficient model for fog computing in the Internet of Things (IoT). Internet Tings 1–2, 14–26 (2018)

    CrossRef  Google Scholar 

  33. Oma, R., Nakamura, S., Enokido, T., Takizawa, M.: A tree-based model of energy-efficient fog computing systems in IoT. In: Proceedings of the 12th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS-2018), pp. 991–1001 (2018). https://doi.org/10.1007/978-3-319-93659-8_92

  34. Oma, R., Nakamura, S., Duolikun, D., Enokido, T., Takizawa, M.: A fault-tolerant tree-based fog computing model. Int. J. Web Grid Serv. 15(3), 219–239 (2019)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Duolikun, D., Enokido, T., Barolli, L., Takizawa, M. (2022). An Energy Consumption Model of Servers to Make Virtual Machines Migrate. In: Barolli, L., Hussain, F., Enokido, T. (eds) Advanced Information Networking and Applications. AINA 2022. Lecture Notes in Networks and Systems, vol 449. Springer, Cham. https://doi.org/10.1007/978-3-030-99584-3_3

Download citation