Sinha, S.: State of iot 2021: Number of connected iot devices growing 9% to 12.3 billion globally, cellular iot now surpassing 2 billion. https://iot-analytics.com/number-connected-iot-devices/ (2021)
Amouris, K.: Space-time division multiple access (STDMA) and coordinated, power-aware MACA for mobile ad hoc networks. In: GLOBECOM 2001. IEEE Global Telecommunications Conference (Cat. No.01CH37270), vol. 5, pp. 2890–2895 (2001)
Google Scholar
Rajandekar, A., Sikdar, B.: A survey of mac layer issues and protocols for machine-to-machine communications. IEEE Internet Things J. 2(2), 175–186 (2015)
CrossRef
Google Scholar
Ali, A., Huiqiang, W., Hongwu, L., Chen, X.: A survey of MAC protocols design strategies and techniques in wireless Ad Hoc networks. J. Commun. 9(1), 30–38 (2014)
CrossRef
Google Scholar
Huang, P., Xiao, L., Soltani, S., Mutka, M.W., Xi, N.: The evolution of MAC protocols in wireless sensor networks: a survey. IEEE Commun. Surv. Tutorials 15(1), 101–120 (2013)
CrossRef
Google Scholar
Doudou, M., Djenouri, D., Badache, N., Bouabdallah, A.: Synchronous contention-based MAC protocols for delay-sensitive wireless sensor networks: a review and taxonomy. J. Netw. Comput. Appl. 38(1), 172–184 (2014). https://doi.org/10.1016/j.jnca.2013.03.012
Abid, K., Lakhlef, H., Bouabdallah, A.: A survey on recent contention-free mac protocols for static and mobile wireless decentralized networks in IOT. Comput. Netw. 201, 108583 (2021). https://www.sciencedirect.com/science/article/pii/S1389128621004886
Xuelin, C., Zuxun, S.: An overview of slot assignment (SA) for TDMA. In: 2015 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), pp. 1–5 (2015)
Google Scholar
Yao, K., et al.: Self-organizing slot access for neighboring cooperation in UAV swarms. IEEE Trans. Wire. Commun. 19(4), 2800–2812 (2020)
CrossRef
Google Scholar
Sindhwal, H., Dasari, M., Vattikuti, N.: Slot conflict resolution in tdma based mobile ad hoc networks. In: Annual IEEE India Conference (INDICON), vol. 2015, pp. 1–6 (2015)
Google Scholar
Jiang, X., Du, D.H.C.: PTMAC: a prediction-based TDMA mac protocol for reducing packet collisions in VANET. IEEE Trans. Veh. Technol. 65(11), 9209–9223 (2016)
CrossRef
Google Scholar
Bang, J.-H., Lee, J.-R.: Collision avoidance method using vector-based mobility model in TDMA-based vehicular ad hoc networks. Appl. Sci. 10(12) (2020). https://www.mdpi.com/2076-3417/10/12/4181
Lopez, P.A., et al.: Microscopic traffic simulation using sumo. In: The 21st IEEE International Conference on Intelligent Transportation Systems. IEEE, pp. 2575–2582, November 2018. https://elib.dlr.de/127994/
Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Analy. 38(4), 367–378 (2002). nonlinear Methods and Data Mining. https://www.sciencedirect.com/science/article/pii/S0167947301000652
Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989). https://www.sciencedirect.com/science/article/pii/0893608089900208
Cristianini, N., Shawe-Taylor, J., et al.: An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press (2000)
Google Scholar