Skip to main content

Mechanical and Morphological Properties Correlation of PLA-PVC-Wood Powder-Fe3O4 Composite Matrix for 3D Printing

  • Chapter
  • First Online:
Additive, Subtractive, and Hybrid Technologies

Part of the book series: Mechanical Engineering Series ((MES))

  • 405 Accesses

Abstract

In the past one decade, significant studies on mechanical and morphological properties of feedstock filament for fused deposition modelling (FDM) have been reported. But, hitherto, little has been reported on the development of correlation matrix for such properties of feedstock filament. In the present research work, an effort has been made to develop a correlation among different outputs (peak strength, break strength, melt flow index, Shore D hardness and modulus of toughness) of feedstock filament prepared with polylactic acid (PLA)-polyvinyl chloride (PVC)-wood powder-Fe3O4 composite matrix. The results of the study suggest that melt flow index has poor correlation with other mechanical properties. On the other hand, Shore D hardness has strong positive correlation with mechanical properties of feedstock filament and negative correlation with porosity of the material matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cuiffo, M. A., Snyder, J., Elliott, A. M., Romero, N., Kannan, S., & Halada, G. P. (2017). Impact of the fused deposition (FDM) printing process on polylactic acid (PLA) chemistry and structure. Applied Sciences, 7(6), 579.

    Article  Google Scholar 

  2. Heidari-Rarani, M., Rafiee-Afarani, M., & Zahedi, A. M. (2019). Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites. Composites Part B: Engineering, 175, 107147.

    Article  Google Scholar 

  3. Beesetty, P., Patil, B., & Doddamani, M. (2020). Mechanical behavior of additively manufactured nanoclay/HDPE nanocomposites. Composite Structures, 247, 112442.

    Article  Google Scholar 

  4. Sandhu, G. S., & Singh, R. (2019). Development of ABS-graphene blended feedstock filament for FDM process. In Additive manufacturing of emerging materials (pp. 279–297). Springer.

    Chapter  Google Scholar 

  5. Kumar, S., Singh, R., Singh, T. P., & Batish, A. (2019). On investigation of rheological, mechanical and morphological characteristics of waste polymer-based feedstock filament for 3D printing applications. Journal of Thermoplastic Composite Materials. https://doi.org/10.1177/0892705719856063

  6. Momeni, F., Liu, X., & Ni, J. (2017). A review of 4D printing. Materials & Design, 122, 42–79.

    Article  Google Scholar 

  7. Kuang, X., Roach, D. J., Wu, J., Hamel, C. M., Ding, Z., Wang, T., Dunn, M. L., & Qi, H. J. (2019). Advances in 4D printing: Materials and applications. Advanced Functional Materials, 29(2), 1805290.

    Article  Google Scholar 

  8. Kumar, S., Singh, R., Batish, A., & Singh, T. P. (2019). Additive manufacturing of smart materials exhibiting 4-D properties: A state of art review. Journal of Thermoplastic Composite Materials. https://doi.org/10.1177/0892705719895052

  9. Kumar, S., Singh, R., Singh, T. P., & Batish, A. (2020). Fused filament fabrication: A comprehensive review. Journal of Thermoplastic Composite Materials. https://doi.org/10.1177/0892705720970629

  10. Miao, S., Castro, N., Nowicki, M., Xia, L., Cui, H., Zhou, X., Zhu, W., Lee, S. J., Sarkar, K., Vozzi, G., & Tabata, Y. (2017). 4D printing of polymeric materials for tissue and organ regeneration. Materials Today, 20(10), 577–591.

    Article  Google Scholar 

  11. Kumar, S., Singh, R., Singh, T. P., & Batish, A. (2019). On mechanical characterization of 3-D printed PLA-PVC-wood dust-Fe3O4 composite. Journal of Thermoplastic Composite Materials. https://doi.org/10.1177/0892705719879195

  12. Kumar, S., Singh, R., Singh, T. P., & Batish, A. (2019). Investigations for magnetic properties of PLA-PVC-Fe3O4-wood dust blend for self-assembly applications. Journal of Thermoplastic Composite Materials. https://doi.org/10.1177/0892705719857778

  13. Kumar, S., Singh, R., Singh, T. P., & Batish, A. (2020). Investigations for mechanical, thermal and magnetic properties of polymeric composite matrix for four-dimensional printing applications. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(4), 1–15.

    Article  Google Scholar 

  14. Raksaksri, L., Chaiwutthinan, P., Larpkasemsuk, A., Chuayjuljit, S., & Boonmahitthisud, A. (2020). Properties of wood-plastic composites based on pvc/pla/pbat ternary blend. Journal of Metals, Materials and Minerals, 30, 2.

    Google Scholar 

  15. Kumar, S., Singh, R., Singh, T. P., & Batish, A. (2020). Flexural, pull-out, and fractured surface characterization for multi-material 3D printed functionally graded prototype. Journal of Composite Materials, 54(16), 2087–2099.

    Article  Google Scholar 

  16. Kumar, S., Singh, R., Singh, M., Singh, T. P., & Batish, A. (2020). Multi material 3D printing of PLA-PA6/TiO2 polymeric matrix: Flexural, wear and morphological properties. Journal of Thermoplastic Composite Materials. https://doi.org/10.1177/0892705720953193

  17. Kumar, S., Singh, R., & Hashmi, M. S. J. (2020). Metal matrix composite: A methodological review. Advances in Materials and Processing Technologies, 6(1), 13–24.

    Article  Google Scholar 

  18. Camargo, J. C., Machado, Á. R., Almeida, E. C., & Silva, E. F. M. S. (2019). Mechanical properties of PLA-graphene filament for FDM 3D printing. The International Journal of Advanced Manufacturing Technology, 103(5), 2423–2443.

    Article  Google Scholar 

  19. Ivanov, E., Kotsilkova, R., Xia, H., Chen, Y., Donato, R. K., Donato, K., Godoy, A. P., Di Maio, R., Silvestre, C., Cimmino, S., & Angelov, V. (2019). PLA/graphene/MWCNT composites with improved electrical and thermal properties suitable for FDM 3D printing applications. Applied Sciences, 9(6), 1209.

    Article  Google Scholar 

  20. Yao, T., Ye, J., Deng, Z., Zhang, K., Ma, Y., & Ouyang, H. (2020). Tensile failure strength and separation angle of FDM 3D printing PLA material: Experimental and theoretical analyses. Composites Part B: Engineering, 188, 107894.

    Article  Google Scholar 

  21. Kim, H., Fernando, T., Li, M., Lin, Y., & Tseng, T. L. B. (2018). Fabrication and characterization of 3D printed BaTiO3/PVDF nanocomposites. Journal of Composite Materials, 52(2), 197–206.

    Article  Google Scholar 

  22. Sharma, R., Singh, R., & Batish, A. (2020). On effect of chemical-assisted mechanical blending of barium titanate and graphene in PVDF for 3D printing applications. Journal of Thermoplastic Composite Materials. https://doi.org/10.1177/0892705720945377

Download references

Acknowledgement

The authors are highly obliged to Thapar Institute of Engineering and Technology, Patiala and NITTTR Chandigarh for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupinder Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S., Singh, R., Singh, T.P., Batish, A. (2022). Mechanical and Morphological Properties Correlation of PLA-PVC-Wood Powder-Fe3O4 Composite Matrix for 3D Printing. In: Prakash, C., Singh, S., Ramakrishna, S. (eds) Additive, Subtractive, and Hybrid Technologies. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-99569-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99569-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99568-3

  • Online ISBN: 978-3-030-99569-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics