Skip to main content

Experimental Study on Machinability of AISI 4340 Steel During Hard Turning by CBN Tool

  • Chapter
  • First Online:
Additive, Subtractive, and Hybrid Technologies

Abstract

In this work, the performance of the CBN tool has been studied during hard turning of AISI 4340 steel in dry environment. The machining parameters that vary during the turning process are cutting speed, feed rate, and depth of cut. The experiments are performed according to Taguchi’s L9 orthogonal array, and ANOVA is used to analyze the influence of machining parameters on output responses, viz. machining forces and surface characteristics of the machined surface. Finally, multi-objective optimization technique like VIKOR method is used to get optimal machining parameters for better performance. Feed rate is found to be the most influential parameter on the output performances followed by depth of cut and cutting speed. Further, regression analysis is used to correlate the experimental data with predicted data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang, W. H., & Tarng, Y. S. (1998). Design optimization of cutting parameters for turning operations based on the Taguchi method. Journal of Materials Processing Technology, 84, 122–129.

    Article  Google Scholar 

  2. Nalbant, M., Gokkaya, H., & Sur, G. (2007). Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning. Materials and Design, 28, 1379–1385.

    Article  Google Scholar 

  3. Rathod, K. B., & Lalwani, D. I. (2017). Experimental investigation of flank wear and surface roughness during hard turning of AISI H11 steel with CBN tools. Indian Journal of Engineering & Materials Sciences, 24, 171–181.

    Google Scholar 

  4. Das, A., Mukhopadhyay, A., Patel, S. K., & Biswal, B. B. (2016). Comparative assessment on machinability aspects of AISI 4340 alloy steel using uncoated carbide and coated cermet inserts during hard turning. Arabian Journal for Science and Engineering, 41, 4531–4552.

    Article  Google Scholar 

  5. Asilturk, I., & Akkus, H. (2011). Determining the effect of cutting parameters on surface roughness in hard turning using the Taguchi method. Measurement, 44, 1697–1704.

    Google Scholar 

  6. Stakhniv, N. E., & Devin, L. N. (2012). The study of the influence of wear of the cutting tool with an insert of cBN-based composite material on the tool vibrations in finish turning of hardened steels. Journal of Superhard Materials, 34(3), 193–199.

    Article  Google Scholar 

  7. Gangopadhyay, S., Acharya, R., Chattopadhyay, A. K., & Sargade, V. G. (2010). Effect of cutting speed and surface chemistry of cutting tools on the formation of BUL or BUE and surface quality of the generated surface in dry turning of AA6005 aluminium alloy. Machining Science and Technology, 14, 208–223.

    Article  Google Scholar 

  8. Bhushan, R. K., Kumar, S., & Das, S. (2010). Effect of machining parameters on surface roughness and tool wear for 7075 Al alloy SiC composite. International Journal of Advanced Manufacturing Technology, 50, 459–469.

    Article  Google Scholar 

  9. Che-Haron, C. H. (2001). Tool life and surface integrity in turning titanium alloy. Journal of Materials Processing Technology, 118, 231–237.

    Article  Google Scholar 

  10. Nordgren, A., Samani, B. Z., & Saoubi, R. (2014). Experimental study and modelling of plastic deformation of cemented carbide tools in turning. Procedia CIRP, 14, 599–604.

    Article  Google Scholar 

  11. Ramesh, S., Karunamoorthy, L., & Palanikumar, K. (2012). Measurement and analysis of surface roughness in turning of aerospace titanium alloy (gr5). Measurement, 45, 1266–1276.

    Article  Google Scholar 

  12. Jagadesh, T., & Samuel, G. L. (2014). Investigations into cutting forces and surface roughness in micro turning of titanium alloy using coated carbide tool. Procedia Materials Science, 5, 2450–2457.

    Article  Google Scholar 

  13. Upadhyay, V., Jain, P. K., & Mehta, N. K. (2013). In-process prediction of surface roughness in turning of Ti–6Al–4V alloy using cutting parameters and vibration signals. Measurement, 46, 154–160.

    Article  Google Scholar 

  14. Khan, A., & Maity, K. (2017). Parametric modelling of multiple quality characteristics in turning of CP titanium grade-2 with cryo-treated inserts. International Journal of Materials and Product Technology, 54(4), 306–331.

    Article  Google Scholar 

  15. Khan, A., & Maity, K. (2018). Influence of cutting speed and cooling method on the machinability of commercially pure titanium (CP-Ti) grade II. Journal of Manufacturing Processes, 31, 650–661.

    Article  Google Scholar 

  16. Parida, A. K., & Maity, K. (2018). Comparison the machinability of Inconel 718, Inconel 625 and Monel 400 in hot turning operation. Engineering Science and Technology: An International Journal, 21, 364–370.

    Google Scholar 

  17. Pattnaik, S. K., Bhoi, N. K., Padhi, S., & Sarangi, S. K. (2018). Dry machining of aluminum for proper selection of cutting tool: Tool performance and tool wear. International Journal of Advanced Manufacturing Technology, 98, 55–65.

    Article  Google Scholar 

  18. Kumar, S., Singh, D., & Kalsi, N. S. (2020). Performance evaluation of TiN-coated CBN tools during turning of variable hardened AISI 4340 steel. In Advanced engineering optimization through intelligent techniques (pp. 847–857). Springer.

    Chapter  Google Scholar 

  19. Mane, S., Mishra, A., & Kannawar, V. (2020). Optimization of cutting parameters in dry turning of AISI 4340 hardened alloy steel with multilayered coated carbide tool. In Proceedings of international conference on intelligent manufacturing and automation (pp. 99–105). Springer.

    Chapter  Google Scholar 

  20. Tiwari, P. K., Kumar, R., Sahoo, A. K., Panda, A., Das, D., & Roy, S. (2020). Performance evaluation of coated cermet insert in hard turning. Materials Today: Proceedings, 26, 1941–1947.

    Google Scholar 

  21. Sahu, A. K., Mahapatra, S. S., & Chatterjee, S. (2018). Optimization of electro-discharge coating process using harmony search. Materials Today: Proceedings, 5, 12673–12680.

    Google Scholar 

  22. Sahu, A. K., & Mahapatra, S. S. (2019). Optimization of surface roughness parameters by different multi-response optimization techniques during electro-discharge machining of titanium alloy. In K. Kumar, N. Kumari, & J. P. Davim (Eds.), Non-conventional machining in modern manufacturing systems (pp. 82–108). Springer.

    Chapter  Google Scholar 

  23. Khan, A., & Maity, K. A. (2016). Novel MCDM approach for simultaneous optimization of some correlated machining parameters in turning of CP-titanium grade 2. International Journal of Engineering Research in Africa, 22, 94–111.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tarai, J.K., Sahu, S., Pradhan, S., Prakash, C., Sahu, A.K., Mahapatra, S.S. (2022). Experimental Study on Machinability of AISI 4340 Steel During Hard Turning by CBN Tool. In: Prakash, C., Singh, S., Ramakrishna, S. (eds) Additive, Subtractive, and Hybrid Technologies. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-99569-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99569-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99568-3

  • Online ISBN: 978-3-030-99569-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics