Abstract
Atomic force microscopy (AFM) is an extensively used advanced characterization technique for a nanoscale range of materials. This chapter clearly describes the importance and advantages of AFM, its working principles, modes of measurement, and its applications in interdisciplinary fields such as chemistry, materials science, and biology.
Keywords
- Atomic force microscopy
- Surface morphology
- Sheet thickness
- Materials science
- Contact mode
The authors Jeevan Kumar Reddy Modigunta and Selvamani Vadivel both contribute equally.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Binning G, Rohrer H, Gerber C, Weibel E (1993) Surface studies by scanning tunneling microscopy. In: Neddermeyer H (ed) Scanning tunneling microscopy. Springer, Dordrecht, pp 31–35. https://doi.org/10.1007/978-94-011-1812-5_1
Young R, Ward J, Scire F (1972) The Topografiner: an instrument for measuring surface microtopography. Rev Sci Instrum 43(7):999–1011. https://doi.org/10.1063/1.1685846
Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933. https://doi.org/10.1103/PhysRevLett.56.930
Martin Y, Williams CC, Wickramasinghe HK (1987) Atomic force microscope–force mapping and profiling on a sub 100-Å scale. J Appl Phys 61(10):4723–4729. https://doi.org/10.1063/1.338807
Nguyen-Tri P, Ghassemi P, Carriere P, Nanda S, Assadi AA, Nguyen DD (2020) Recent applications of advanced atomic force microscopy in polymer science: a review. Polymers 12(5). https://doi.org/10.3390/polym12051142
Dazzi A, Prater CB (2017) AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem Rev 117(7):5146–5173. https://doi.org/10.1021/acs.chemrev.6b00448
Mousoulis C, Maleki T, Ziaie B, Neu CP (2013) Atomic force microscopy-coupled microcoils for cellular-scale nuclear magnetic resonance spectroscopy. Appl Phys Lett 102(14):143702–143702. https://doi.org/10.1063/1.4801318
Lherbette M, dos Santos Á, Hari-Gupta Y, Fili N, Toseland CP, Schaap IAT (2017) Atomic force microscopy micro-rheology reveals large structural inhomogeneities in single cell-nuclei. Sci Rep 7(1):8116. https://doi.org/10.1038/s41598-017-08517-6
Hobson CM, Kern M, O’Brien ET, Stephens AD, Falvo MR, Superfine R (2020) Correlating nuclear morphology and external force with combined atomic force microscopy and light sheet imaging separates roles of chromatin and lamin A/C in nuclear mechanics. bioRxiv:2020.2002.2010.942581. https://doi.org/10.1101/2020.02.10.942581
Dufrêne YF, Ando T, Garcia R, Alsteens D, Martinez-Martin D, Engel A, Gerber C, Müller DJ (2017) Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat Nanotechnol 12(4):295–307. https://doi.org/10.1038/nnano.2017.45
Maghsoudy-Louyeh S, Kropf M, Tittmann BR (2018) Review of progress in atomic force microscopy. Open Neuroimaging J 12:86–104. https://doi.org/10.2174/1874440001812010086
Kenkel S, Mittal S, Bhargava R (2020) Closed-loop atomic force microscopy-infrared spectroscopic imaging for nanoscale molecular characterization. Nat Commun 11(1):3225. https://doi.org/10.1038/s41467-020-17043-5
Shao Z, Mou J, Czajkowsky DM, Yang J, Yuan J-Y (1996) Biological atomic force microscopy: what is achieved and what is needed. Adv Phys 45(1):1–86. https://doi.org/10.1080/00018739600101467
Horcas I, Fernández R, Gómez-Rodríguez JM, Colchero J, Gómez-Herrero J, Baro AM (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78(1):013705. https://doi.org/10.1063/1.2432410
Engel A, Müller DJ (2000) Observing single biomolecules at work with the atomic force microscope. Nat Struct Biol 7(9):715–718. https://doi.org/10.1038/78929
Vesenka J, Manne S, Giberson R, Marsh T, Henderson E (1993) Colloidal gold particles as an incompressible atomic force microscope imaging standard for assessing the compressibility of biomolecules. Biophys J 65(3):992–997. https://doi.org/10.1016/S0006-3495(93)81171-8
Stylianou A, Kontomaris S-V, Grant C, Alexandratou E (2019) Atomic force microscopy on biological materials related to pathological conditions. Scanning 2019:8452851. https://doi.org/10.1155/2019/8452851
Pyne A, Thompson R, Leung C, Roy D, Hoogenboom BW (2014) Single-molecule reconstruction of oligonucleotide secondary structure by atomic force microscopy. Small 10(16):3257–3261. https://doi.org/10.1002/smll.201400265
Gross L, Mohn F, Moll N, Liljeroth P, Meyer G (2009) The chemical structure of a molecule resolved by atomic force microscopy. Science 325(5944):1110. https://doi.org/10.1126/science.1176210
Schuler B, Meyer G, Peña D, Mullins OC, Gross L (2015) Unraveling the molecular structures of asphaltenes by atomic force microscopy. J Am Chem Soc 137(31):9870–9876. https://doi.org/10.1021/jacs.5b04056
Lang S-Y, Shi Y, Hu X-C, Yan H-J, Wen R, Wan L-J (2019) Recent progress in the application of in situ atomic force microscopy for rechargeable batteries. Curr Opin Electrochem 17:134–142. https://doi.org/10.1016/j.coelec.2019.05.004
Carvalho FA, Connell S, Miltenberger-Miltenyi G, Pereira SV, Tavares A, Ariëns RAS, Santos NC (2010) Atomic force microscopy-based molecular recognition of a fibrinogen receptor on human erythrocytes. ACS Nano 4(8):4609–4620. https://doi.org/10.1021/nn1009648
Murali G, Rawal J, Modigunta JKR, Park YH, Lee J-H, Lee S-Y, Park S-J, In I (2021) A review on MXenes: new-generation 2D materials for supercapacitors. Sustainab Energy Fuels 5(22):5672–5693. https://doi.org/10.1039/D1SE00918D
Dong R, Yan J, Ma H, Fang Y, Hao J (2011) Dimensional architecture of ferrocenyl-based oligomer honeycomb-patterned films: from monolayer to multilayer. Langmuir 27(14):9052–9056. https://doi.org/10.1021/la201264u
Acknowledgments
This research was supported by the Radiation Technology R&D program (NRF-2017M2A2A6A01019289), funded by the Ministry of Science, ICT and Future Planning. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2018R1A6A1A03023788 and 2021R1I1A1A01055790). Additionally, this work was supported by the Korea Institute for Advancement of Technology (KIAT) grant funded by the Korean Government (MOTIE) (P00008500, The Competency Development Program for Industry Specialist). This work was supported by the Material Components Global Investment Linkage Technology Development Project (Global Open Technology Development Project) (20013593) of the KEIT, MOTIE (KOREA).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Modigunta, J.K.R., Vadivel, S., Murali, G., In, I., Sawangphruk, M. (2022). Atomic Force Microscopy: An Advanced Imaging Technique—From Molecules to Morphologies. In: Kamaraj, SK., Thirumurugan, A., Dhanabalan, S.S., Hevia, S.A. (eds) Microscopic Techniques for the Non-Expert. Springer, Cham. https://doi.org/10.1007/978-3-030-99542-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-99542-3_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-99541-6
Online ISBN: 978-3-030-99542-3
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)