Abstract
Digital mathematical libraries assemble the knowledge of years of mathematical research. Numerous disciplines (e.g., physics, engineering, pure and applied mathematics) rely heavily on compendia gathered findings. Likewise, modern research applications rely more and more on computational solutions, which are often calculated and verified by computer algebra systems. Hence, the correctness, accuracy, and reliability of both digital mathematical libraries and computer algebra systems is a crucial attribute for modern research. In this paper, we present a novel approach to verify a digital mathematical library and two computer algebra systems with one another by converting mathematical expressions from one system to the other. We use our previously developed conversion tool (referred to as
) to translate formulae from the NIST Digital Library of Mathematical Functions to the computer algebra systems Maple and Mathematica. The contributions of our presented work are as follows: (1) we present the most comprehensive verification of computer algebra systems and digital mathematical libraries with one another; (2) we significantly enhance the performance of the underlying translator in terms of coverage and accuracy; and (3) we provide open access to translations for Maple and Mathematica of the formulae in the NIST Digital Library of Mathematical Functions.
Keywords
- Presentation to Computation
- LaCASt
- LaTeX
- Semantic LaTeX
- Computer Algebra Systems
- Digital Mathematical Library
Download conference paper PDF
References
Aguirregabiria, J.M., Hernández, A.M., Rivas, M.: Are we careful enough when using computer algebra? Computers in Physics 8(1), 56–61 (1994). https://doi.org/10.1063/1.4823260
Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A modular reusable verifier for object-oriented programs. In: Formal Methods for Components and Objects, pp. 364–387. Springer Berlin Heidelberg (2006). https://doi.org/10.1007/11804192_17
Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development - Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. An EATCS Series, Springer Berlin Heidelberg (2004)
Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of provers. Boogie 2011: First International Workshop on Intermediate Verification Languages pp. 53–64 (5 2011), https://hal.inria.fr/hal-00790310/document
Boulmé, S., Hardin, T., Hirschkoff, D., Ménissier-Morain, V., Rioboo, R.: On the way to certify computer algebra systems. Electronic Notes in Theoretical Computer Science 23(3), 370–385 (1999). https://doi.org/10.1016/S1571-0661(05)80609-7, cALCULEMUS 99, Systems for Integrated Computation and Deduction (associated to FLoC’99, the 1999 Federated Logic Conference)
Carette, J., Kucera, M.: Partial evaluation of Maple. Science of Computer Programming 76(6), 469–491 (6 2011). https://doi.org/10.1016/j.scico.2010.12.001
Cohl, H.S., Greiner-Petter, A., Schubotz, M.: Automated symbolic and numerical testing of DLMF formulae using computer algebra systems. In: Intelligent Computer Mathematics CICM. vol. 11006, pp. 39–52. Springer (2018). https://doi.org/10.1007/978-3-319-96812-4_4
Cohl, H.S., Schubotz, M., Youssef, A., Greiner-Petter, A., Gerhard, J., Saunders, B.V., McClain, M.A., Bang, J., Chen, K.: Semantic preserving bijective mappings of mathematical formulae between document preparation systems and computer algebra systems. In: Intelligent Computer Mathematics CICM. pp. 115–131. Springer (2017). https://doi.org/10.1007/978-3-319-62075-6_9
Corless, R.M., Jeffrey, D.J., Watt, S.M., Davenport, J.H.: “According to Abramowitz and Stegun” or arccoth needn’t be uncouth. SIGSAM Bulletin 34(2), 58–65 (2000). https://doi.org/10.1145/362001.362023
DLMF: NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/, Release 1.1.4 of 2022–01-15, F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.
Durán, A.J., Pérez, M., Varona, J.L.: The misfortunes of a trio of mathematicians using computer algebra systems. Can we trust in them? Notices of the AMS 61(10), 1249–1252 (2014)
Elphick, D., Leuschel, M., Cox, S.: Partial evaluation of MATLAB. In: Gen. Prog. and Component Eng., pp. 344–363. Springer (2003). https://doi.org/10.1007/978-3-540-39815-8_21
Greiner-Petter, A., Schubotz, M., Aizawa, A., Gipp, B.: Making presentation math computable: Proposing a context sensitive approach for translating LaTeX to computer algebra systems. In: International Congress of Mathematical Software (ICMS). Lecture Notes in Computer Science, vol. 12097, pp. 335–341. Springer (2020). https://doi.org/10.1007/978-3-030-52200-1_33
Greiner-Petter, A., Schubotz, M., Cohl, H.S., Gipp, B.: Semantic preserving bijective mappings for expressions involving special functions between computer algebra systems and document preparation systems. Aslib Journal of Information Management 71(3), 415–439 (2019). https://doi.org/10.1108/AJIM-08-2018-0185
Greiner-Petter, A., Schubotz, M., Müller, F., Breitinger, C., Cohl, H.S., Aizawa, A., Gipp, B.: Discovering mathematical objects of interest - A study of mathematical notations. In: WWW. pp. 1445–1456. ACM / IW3C2 (2020). https://doi.org/10.1145/3366423.3380218
Harrison, J.: HOL Light: A tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) Formal Methods in Computer-Aided Design (FMCAD). Lecture Notes in Computer Science, vol. 1166, pp. 265–269. Springer Berlin Heidelberg. https://doi.org/10.1007/BFb0031814
Harrison, J.R., Théry, L.: A skeptic’s approach to combining HOL and Maple 21(3), 279–294. https://doi.org/10.1023/A:1006023127567
Heras, J., Pascual, V., Rubio, J.: Using open mathematical documents to interface computer algebra and proof assistant systems. In: Intelligent Computer Mathematics MKM at CICM. Lecture Notes in Computer Science, vol. 5625, pp. 467–473. Springer (2009). https://doi.org/10.1007/978-3-642-02614-0_37
Hickman, T., Laursen, C.P., Foster, S.: Certifying differential equation solutions from computer algebra systems in Isabelle/HOL http://arxiv.org/abs/2102.02679
Kaliszyk, C., Wiedijk, F.: Certified computer algebra on top of an interactive theorem prover. In: Towards Mechanized Math. Assist., pp. 94–105. Springer (2007). https://doi.org/10.1007/978-3-540-73086-6_8
Khan, M.T.: Formal Specification and Verification of Computer Algebra Software. phdthesis, Johannes Kepler University Linz (Apr 2014)
Kristianto, G.Y., Topić, G., Aizawa, A.: Utilizing dependency relationships between math expressions in math IR. Information Retrieval Journal 20(2), 132–167 (3 2017). https://doi.org/10.1007/s10791-017-9296-8
Lambán, L., Rubio, J., Martín-Mateos, F.J., Ruiz-Reina, J.L.: Verifying the bridge between simplicial topology and algebra: the Eilenberg-Zilber algorithm. Logic Journal of IGPL 22(1), 39–65 (8 2013). https://doi.org/10.1093/jigpal/jzt034
Lee, W., Sharma, R., Aiken, A.: On automatically proving the correctness of math.h implementations. Proc. ACM on Prog. Lang. (POPL) 2(47), 1–32 (2018). https://doi.org/10.1145/3158135
Leino, K.R.M.: Program proving using intermediate verification languages (IVLs) like Boogie and Why3. ACM SIGAda Ada Letters 32(3), 25–26 (11 2012). https://doi.org/10.1145/2402709.2402689
Lewis, R.H., Wester, M.: Comparison of polynomial-oriented computer algebra systems. SIGSAM Bull. 33(4), 5–13 (12 1999). https://doi.org/10.1145/500457.500459
Miller, B.R., Youssef, A.: Technical aspects of the digital library of mathematical functions. Ann. Math. Artif. Intell. 38(1-3), 121–136 (2003). https://doi.org/10.1023/A:1022967814992
Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for Higher-Order Logic, Lecture Notes in Computer Science, vol. 2283. Springer Berlin Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9
Parisse, B.: Compiling LATEX to computer algebra-enabled HTML5 http://arxiv.org/abs/1707.01271
Prieto, H., Dalmas, S., Papegay, Y.: Mathematica as an OpenMath application 34(2), 22–26. https://doi.org/10.1145/362001.362016
Schubotz, M., Greiner-Petter, A., Scharpf, P., Meuschke, N., Cohl, H.S., Gipp, B.: Improving the representation and conversion of mathematical formulae by considering their textual context. In: ACM/IEEE JCDL. pp. 233–242. ACM (2018). https://doi.org/10.1145/3197026.3197058
Schubotz, M., Grigorev, A., Leich, M., Cohl, H.S., Meuschke, N., Gipp, B., Youssef, A.S., Markl, V.: Semantification of identifiers in mathematics for better math information retrieval. In: ACM SIGIR’16. pp. 135–144. ACM Press (2016). https://doi.org/10.1145/2911451.2911503
Shan, R., Youssef, A.: Towards math terms disambiguation using machine learning. In: Kamareddine, F., Sacerdoti Coen, C. (eds.) Proceedings of the International Conference on Intelligent Computer Mathematics (CICM). Lecture Notes in Computer Science, vol. 12833, pp. 90–106. Springer. https://doi.org/10.1007/978-3-030-81097-9_7
Youssef, A.: Part-of-math tagging and applications. In: Intelligent Computer Mathematics CICM. Lecture Notes in Computer Science, vol. 10383, pp. 356–374. Springer (2017). https://doi.org/10.1007/978-3-319-62075-6_25
Youssef, A., Miller, B.R.: A contextual and labeled math-dataset derived from NIST’s DLMF. In: Intelligent Computer Mathematics CICM. Lecture Notes in Computer Science, vol. 12236, pp. 324–330. Springer (2020). https://doi.org/10.1007/978-3-030-53518-6_25
Zanibbi, R., Oard, D.W., Agarwal, A., Mansouri, B.: Overview of ARQMath 2020: CLEF lab on answer retrieval for questions on math. In: CLEF. Lecture Notes in Computer Science, vol. 12260, pp. 169–193. Springer (2020). https://doi.org/10.1007/978-3-030-58219-7_15
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
Copyright information
© 2022 The Author(s)
About this paper
Cite this paper
Greiner-Petter, A. et al. (2022). Comparative Verification of the Digital Library of Mathematical Functions and Computer Algebra Systems. In: Fisman, D., Rosu, G. (eds) Tools and Algorithms for the Construction and Analysis of Systems. TACAS 2022. Lecture Notes in Computer Science, vol 13243. Springer, Cham. https://doi.org/10.1007/978-3-030-99524-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-99524-9_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-99523-2
Online ISBN: 978-3-030-99524-9
eBook Packages: Computer ScienceComputer Science (R0)
-
Published in cooperation with
http://www.etaps.org/