Skip to main content

Advertisement

SpringerLink
Go to cart
Book cover

International Conference on Tools and Algorithms for the Construction and Analysis of Systems

TACAS 2022: Tools and Algorithms for the Construction and Analysis of Systems pp 443–461Cite as

  1. Home
  2. Tools and Algorithms for the Construction and Analysis of Systems
  3. Conference paper
Clausal Proofs for Pseudo-Boolean Reasoning

Clausal Proofs for Pseudo-Boolean Reasoning

  • Randal E. Bryant  ORCID: orcid.org/0000-0001-5024-661310,
  • Armin Biere  ORCID: orcid.org/0000-0001-7170-924211 &
  • Marijn J. H. Heule  ORCID: orcid.org/0000-0002-5587-880110 
  • Conference paper
  • Open Access
  • First Online: 30 March 2022
  • 2618 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13243)

Abstract

When augmented with a Pseudo-Boolean (PB) solver, a Boolean satisfiability (SAT) solver can apply apply powerful reasoning methods to determine when a set of parity or cardinality constraints, extracted from the clauses of the input formula, has no solution. By converting the intermediate constraints generated by the PB solver into ordered binary decision diagrams (BDDs), a proof-generating, BDD-based SAT solver can then produce a clausal proof that the input formula is unsatisfiable. Working together, the two solvers can generate proofs of unsatisfiability for problems that are intractable for other proof-generating SAT solvers. The PB solver can, at times, detect that the proof can exploit modular arithmetic to give smaller BDD representations and therefore shorter proofs.

The first and third authors were supported by the U. S. National Science Foundation under grant CCF-2108521

Download conference paper PDF

References

  1. Abío, I., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: A new look at BDDs for pseudo-Boolean constraints. Journal of Artificial Intelligence Research 45, 443–480 (2012)

    Google Scholar 

  2. Alekhnovich, M.: Mutilated chessboard problem is exponentially hard for resolution. Theoretical Computer Science 310(1-3), 513–525 (Jan 2004)

    Google Scholar 

  3. Audemard, G., Katsirelos, G., Simon, L.: A restriction of extended resolution for clause learning SAT solvers. In: AAAI Conference on Artificial Intelligence. pp. 15–20 (2010)

    Google Scholar 

  4. Bareiss, E.H.: Sylvester’s identity and multistep integer-preserving Gaussian elimination. Mathematics of Computation 22, 565–578 (1968)

    Google Scholar 

  5. Barnett, L.A., Biere, A.: Non-clausal redundancy properties. In: Conference on Automated Deduction (CADE). LNAI, vol. 12699, pp. 252–272 (2021)

    Google Scholar 

  6. Biere, A.: Splatz, Lingeling, Plingeling, Treengeling, YalSAT Entering the SAT Competition 2016. In: Proc. of SAT Competition 2016 – Solver and Benchmark Descriptions. Dep. of Computer Science Series of Publications B, vol. B-2016-1, pp. 44–45. University of Helsinki (2016)

    Google Scholar 

  7. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In: Proc. of SAT Competition 2020 – Solver and Benchmark Descriptions. Department of Computer Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

    Google Scholar 

  8. Biere, A., Järvisalo, M., Kiesl, B.: Preprocessing SAT solving. In: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 336, pp. 391–435. IOS Press, second edn. (2021)

    Google Scholar 

  9. Biere, A., Le Berre, D., Lonca, E., Manthey, N.: Detecting cardinality constraints in CNF. In: Theory and Applications of Satisfiability Testing (SAT). LNCS, vol. 8561, pp. 285–301 (2014)

    Google Scholar 

  10. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Computers 35(8), 677–691 (1986)

    Google Scholar 

  11. Bryant, R.E., Heule, M.J.H.: Generating extended resolution proofs with a BDD-based SAT solver. In: Tools and Algorithms for the Construction and Analysis of Systems (TACAS), Part I. LNCS, vol. 12651, pp. 76–93 (2021)

    Google Scholar 

  12. Bryant, R.E., Heule, M.J.H.: Generating extended resolution proofs with a BDD-based SAT solver. CoRR abs/2105.00885 (2021)

    Google Scholar 

  13. Burch, J.R., Clarke, E.M., Long, D.E.: Symbolic model checking with partitioned transition relations. In: VLSI91 (1991)

    Google Scholar 

  14. Chai, D., Kuehlmann, A.: A fast pseudo-Boolean constraint solver. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 24(3), 305–317 (2005)

    Google Scholar 

  15. Chatalic, P., Simon, L.: ZRes: The old Davis-Putnam procedure meets ZBDD. In: Conference on Automated Deduction (CADE). LNCS, vol. 1831, pp. 449–454 (2000)

    Google Scholar 

  16. Chen, J.: A new SAT encoding of at-most-one constraint. In: Workshop on Constraint Modeling and Reformulation (2010)

    Google Scholar 

  17. Chew, L., Heule, M.J.H.: Sorting parity encodings by reusing variables. In: Theory and Applications of Satisfiability Testing (SAT). LNCS, vol. 12178, pp. 1–10 (2020)

    Google Scholar 

  18. Codel, C., Reeves, J., Heule, M.J.H., Bryant, R.E.: Bipartite perfect matching benchmarks. In: Pragmatics of SAT (2021)

    Google Scholar 

  19. Cook, S.A.: A short proof of the pigeon hole principle using extended resolution. SIGACT News 8(4), 28–32 (Oct 1976)

    Google Scholar 

  20. Cruz-Filipe, L., Heule, M.J.H., Hunt, W.A., Kaufmann, M., Schneider-Kamp, P.: Efficient certified RAT verification. In: Conference on Automated Deduction (CADE). LNCS, vol. 10395, pp. 220–236 (2017)

    Google Scholar 

  21. Dantzig, G.B., Eaves, B.C.: Fourier-Motzkin elimination and its dual with application to integer programming. In: Combinatorial Programming: Methods and Applications. pp. 93–102. Springer (1974)

    Google Scholar 

  22. Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artificial Intelligence 113(1–2), 41–85 (1999)

    Google Scholar 

  23. Duff, I.S., Reid, J.K.: A comparison of sparsity orderings for obtaining a pivotal sequence in Gaussian elimination. IMA Journal of Applied Mathematics 14(3), 281–291 (1974)

    Google Scholar 

  24. Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. Journal of Satisfiability, Boolean Modeling and Computation 2, 1–26 (2006)

    Google Scholar 

  25. Ellfers, J., Nordström, J.: Documentation of some combinatorial benchmarks. In: Proceedings of the SAT Competition 2016 (2016)

    Google Scholar 

  26. Gabber, O., Galil, Z.: Explicit construction of linear-sized superconcentrators. Journal of Computer and System Sciences 22, 407–420 (1981)

    Google Scholar 

  27. Gocht, S., Nordström, J.: Certifying parity reasoning efficiently using pseudo-Boolean proofs. In: AAAI Conference on Artificial Intelligence. pp. 3768–3777 (2021)

    Google Scholar 

  28. Gomory, R.: Outline of an algorithm for integer solutions to linear programs. Bulletin of the American Mathematical Society 64, 275–278 (1958)

    Google Scholar 

  29. Haken, A.: The intractability of resolution. Theoretical Computer Science 39, 297–308 (1985)

    Google Scholar 

  30. Han, C.S., Jiang, J.H.R.: When Boolean satisfiability meets Gaussian elimination in a simplex way. In: Computer-Aided Verification (CAV). LNCS, vol. 7358, pp. 410–426 (2012)

    Google Scholar 

  31. Heule, M.J.H., Hunt, Jr., W.A., Wetzler, N.D.: Verifying refutations with extended resolution. In: Conference on Automated Deduction (CADE). LNCS, vol. 7898, pp. 345–359 (2013)

    Google Scholar 

  32. Hooker, J.N.: Generalized resolution and cutting planes. Annals of Operations Research 12, 217–238 (1988)

    Google Scholar 

  33. Hosaka, K., Takenaga, Y., Yajima, S.: Size of ordered binary decision diagrams representing threshold functions. Theoretical Computer Science 180, 47–60 (1996)

    Google Scholar 

  34. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: International Joint Conference on Automated Reasoning (IJCAR). LNCS, vol. 7364, pp. 355–370 (2012)

    Google Scholar 

  35. Jussila, T., Sinz, C., Biere, A.: Extended resolution proofs for symbolic SAT solving with quantification. In: Theory and Applications of Satisfiability Testing (SAT). LNCS, vol. 4121, pp. 54–60 (2006)

    Google Scholar 

  36. Klieber, W., Kwon, G.: Efficient CNF encoding for selecting 1 from N objects. In: Constraints in Formal Verification (CFV) (2007)

    Google Scholar 

  37. Laitinen, T., Junttila, T., Niemelä, I.: Extending clause learning SAT solvers with complete parity reasoning. In: International Conference on Tools with Artificial Intelligence. pp. 65–72. IEEE (2012)

    Google Scholar 

  38. Li, C.M.: Equivalent literal propagation in the DLL procedure. Discrete Applied Mathematics 130(2), 251–276 (2003)

    Google Scholar 

  39. Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of Boolean formulas. In: Haifa Verification Conference. LNCS, vol. 7857 (2013)

    Google Scholar 

  40. Margulis, G.A.: Explicit construction of concentrators. Probl. Perdachi Info (Problems in Information Transmission) 9(4), 71–80 (1973)

    Google Scholar 

  41. Markowitz, H.M.: The elimination form of the inverse and its application to linear programming. Management Science 3(3), 213–284 (1957)

    Google Scholar 

  42. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In: Handbook of Satisfiability, pp. 131–153. IOS Press (2009)

    Google Scholar 

  43. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J.ACM 12(1), 23–41 (January 1965)

    Google Scholar 

  44. Rosser, J.B.: A method of computing exact inverses of matrices with integer coefficients. Journal of Research of the National Bureau of Standards 49(5), 349–358 (1952)

    Google Scholar 

  45. Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In: Principles and Practice of Constraint Programming (CP). LNCS, vol. 3709, pp. 827–831 (2005)

    Google Scholar 

  46. Sinz, C., Biere, A.: Extended resolution proofs for conjoining BDDs. In: Computer Science Symposium in Russia (CSR). LNCS, vol. 3967, pp. 600–611 (2006)

    Google Scholar 

  47. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In: Proc. of the 12th Int. Conference on Theory and Applications of Satisfiability Testing (SAT 2009). LNCS, vol. 5584, pp. 244–257 (2009)

    Google Scholar 

  48. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Automation of Reasoning: 2: Classical Papers on Computational Logic 1967–1970. pp. 466–483. Springer (1983)

    Google Scholar 

  49. Urquhart, A.: The complexity of propositional proofs. The Bulletin of Symbolic Logic 1(4), 425–467 (1995)

    Google Scholar 

  50. Wetzler, N.D., Heule, M.J.H., Hunt Jr., W.A.: DRAT-trim: Efficient checking and trimming using expressive clausal proofs. In: Theory and Applications of Satisfiability Testing (SAT). LNCS, vol. 8561, pp. 422–429 (2014)

    Google Scholar 

  51. Williams, H.P.: Fourier-Motzkin elimination extension to integer programming problems. Journal of Combinatorial Theory (A) 21, 118–123 (1976)

    Google Scholar 

  52. Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based checker: Practical implementations and other applications. In: Design, Automation and Test in Europe (DATE). pp. 880–885 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Carnegie Mellon University, Pittsburgh, PA, United States

    Randal E. Bryant & Marijn J. H. Heule

  2. Albert-Ludwigs University, Freiburg, Germany

    Armin Biere

Authors
  1. Randal E. Bryant
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Armin Biere
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Marijn J. H. Heule
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Randal E. Bryant .

Editor information

Editors and Affiliations

  1. Ben-Gurion University of the Negev, Be'er Sheva, Israel

    Dr. Dana Fisman

  2. University of Illinois Urbana-Champaign, Urbana, IL, USA

    Grigore Rosu

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and Permissions

Copyright information

© 2022 The Author(s)

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bryant, R.E., Biere, A., Heule, M.J.H. (2022). Clausal Proofs for Pseudo-Boolean Reasoning. In: Fisman, D., Rosu, G. (eds) Tools and Algorithms for the Construction and Analysis of Systems. TACAS 2022. Lecture Notes in Computer Science, vol 13243. Springer, Cham. https://doi.org/10.1007/978-3-030-99524-9_25

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-030-99524-9_25

  • Published: 30 March 2022

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99523-2

  • Online ISBN: 978-3-030-99524-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • The European Joint Conferences on Theory and Practice of Software.

    Published in cooperation with

    http://www.etaps.org/

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.