Skip to main content

Quantitative Program Sketching using Lifted Static Analysis

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13241)

Abstract

We present a novel approach for resolving numerical program sketches under Boolean and quantitative objectives. The input is a program sketch, which represents a partial program with missing numerical parameters (holes). The aim is to automatically synthesize values for the parameters, such that the resulting complete program satisfies: a Boolean (qualitative) specification given in the form of assertions; and a quantitative specification that estimates the number of execution steps to termination and which the synthesizer is expected to optimize.

To address the above quantitative sketching problem, we encode a program sketch as a program family (a.k.a. software product line) and analyze it by the specifically designed lifted analysis algorithms based on abstract interpretation. In particular, we use a combination of forward (numerical) and backward (termination) lifted analysis of program families to find the variants (family members) that satisfy all assertions, and moreover are optimal with respect to the given quantitative objective. Such obtained variants represent “correct & optimal” sketch realizations.

We present a prototype implementation of our approach within the FamilySketcher  tool for resolving C sketches with numerical types. We have evaluated our approach on a set of benchmarks, and experimental results confirm the effectiveness of our approach.

Keywords

  • Quantitative program sketching
  • Software Product Lines
  • Abstract Interpretation

References

  1. Alur, R., Bodík, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A., Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In: Formal Methods in Computer-Aided Design, FMCAD 2013. pp. 1–8. IEEE (2013), http://ieeexplore.ieee.org/document/6679385/

  2. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in synthesis through quantitative objectives. In: Computer Aided Verification, 21st International Conference, CAV 2009. Proceedings. LNCS, vol. 5643, pp. 140–156. Springer (2009). https://doi.org/10.1007/978-3-642-02658-4_14

  3. Bodden, E., Tolêdo, T., Ribeiro, M., Brabrand, C., Borba, P., Mezini, M.: Spl\({}^{\text{lift}}\): statically analyzing software product lines in minutes instead of years. In: ACM SIGPLAN Conference on PLDI ’13. pp. 355–364 (2013)

    Google Scholar 

  4. Ceska, M., Dehnert, C., Jansen, N., Junges, S., Katoen, J.: Model repair revamped: On the automated synthesis of markov chains. In: Essays Dedicated to Scott A. Smolka on the Occasion of His 65th Birthday. LNCS, vol. 11500, pp. 107–125. Springer (2019). https://doi.org/10.1007/978-3-030-31514-6_7

  5. Chatterjee, K., Henzinger, T.A., Jobstmann, B., Singh, R.: Measuring and synthesizing systems in probabilistic environments. In: Computer Aided Verification, 22nd International Conference, CAV 2010. Proceedings. LNCS, vol. 6174, pp. 380–395. Springer (2010). https://doi.org/10.1007/978-3-642-14295-6_34

  6. Chaudhuri, S., Clochard, M., Solar-Lezama, A.: Bridging boolean and quantitative synthesis using smoothed proof search. In: The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14. pp. 207–220. ACM (2014). https://doi.org/10.1145/2535838.2535859

  7. Chen, J., Cousot, P.: A binary decision tree abstract domain functor. In: Static Analysis - 22nd International Symposium, SAS 2015, Proceedings. LNCS, vol. 9291, pp. 36–53. Springer (2015). https://doi.org/10.1007/978-3-662-48288-9_3

  8. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-Wesley (2001)

    Google Scholar 

  9. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Conf. Record of the Fourth ACM Symposium on POPL. pp. 238–252. ACM (1977). https://doi.org/10.1145/512950.512973

  10. Cousot, P., Cousot, R., Mauborgne, L.: A scalable segmented decision tree abstract domain. In: Time for Verification, Essays in Memory of Amir Pnueli. LNCS, vol. 6200, pp. 72–95. Springer (2010). https://doi.org/10.1007/978-3-642-13754-9_5

  11. Dimovski, A.S.: Lifted static analysis using a binary decision diagram abstract domain. In: Proceedings of the 18th ACM SIGPLAN International Conference on GPCE 2019. pp. 102–114. ACM (2019). https://doi.org/10.1145/3357765.3359518

  12. Dimovski, A.S.: A binary decision diagram lifted domain for analyzing program families. J. Comput. Lang. 63, 101032 (2021). https://doi.org/10.1016/j.cola.2021.101032

  13. Dimovski, A.S.: Lifted termination analysis by abstract interpretation and its applications. In: GPCE ’21: Concepts and Experiences, Chicago, IL, USA, October, 2021. pp. 96–109. ACM (2021). https://doi.org/10.1145/3486609.3487202

  14. Dimovski, A.S.: Tool artifact for “quantitative program sketching using lifted static analysis”. Zenodo (2022). https://doi.org/10.5281/zenodo.5898643, https://zenodo.org/record/5898643#.YhJLRejMLIU

  15. Dimovski, A.S., Apel, S.: Lifted static analysis of dynamic program families by abstract interpretation. In: 35th European Conference on Object-Oriented Programming, ECOOP 2021. LIPIcs, vol. 194, pp. 14:1–14:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.ECOOP.2021.14

  16. Dimovski, A.S., Apel, S., Legay, A.: A decision tree lifted domain for analyzing program families with numerical features. In: Fundamental Approaches to Software Engineering - 24th International Conference, FASE 2021, Proceedings. LNCS, vol. 12649, pp. 67–86. Springer (2021), https://arxiv.org/abs/2012.05863

  17. Dimovski, A.S., Apel, S., Legay, A.: Program sketching using lifted analysis for numerical program families. In: NASA Formal Methods - 13th International Symposium, NFM 2021, Proceedings. LNCS, vol. 12673, pp. 95–112. Springer (2021). https://doi.org/10.1007/978-3-030-76384-8_7

  18. Dimovski, A.S., Apel, S., Legay, A.: Several lifted abstract domains for static analysis of numerical program families. Sci. Comput. Program. 213, 102725 (2022). https://doi.org/10.1016/j.scico.2021.102725

  19. Dimovski, A.S., Brabrand, C., Wasowski, A.: Variability abstractions for lifted analysis. Sci. Comput. Program. 159, 1–27 (2018)

    Google Scholar 

  20. Dimovski, A.S., Brabrand, C., Wasowski, A.: Finding suitable variability abstractions for lifted analysis. Formal Aspects Comput. 31(2), 231–259 (2019). https://doi.org/10.1007/s00165-019-00479-y

  21. Hunsen, C., Zhang, B., Siegmund, J., Kästner, C., Leßenich, O., Becker, M., Apel, S.: Preprocessor-based variability in open-source and industrial software systems: An empirical study. Empirical Software Engineering 21(2), 449–482 (2016). https://doi.org/10.1007/s10664-015-9360-1

  22. Iosif-Lazar, A.F., Melo, J., Dimovski, A.S., Brabrand, C., Wasowski, A.: Effective analysis of C programs by rewriting variability. Art Sci. Eng. Program. 1(1), 1 (2017). https://doi.org/10.22152/programming-journal.org/2017/1/1

  23. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static analysis. In: Computer Aided Verification, 21st Inter. Conference, CAV 2009. Proceedings. LNCS, vol. 5643, pp. 661–667. Springer (2009). https://doi.org/10.1007/978-3-642-02658-4_52

  24. Midtgaard, J., Dimovski, A.S., Brabrand, C., Wasowski, A.: Systematic derivation of correct variability-aware program analyses. Sci. Comput. Program. 105, 145–170 (2015). https://doi.org/10.1016/j.scico.2015.04.005

  25. Miné, A.: Tutorial on static inference of numeric invariants by abstract interpretation. Foundations and Trends in Programming Languages 4(3-4), 120–372 (2017). https://doi.org/10.1561/2500000034

  26. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Systems, 14th International Conference, TACAS 2008. Proceedings. LNCS, vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-3_24

  27. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-Verlag, Secaucus, USA (1999)

    Google Scholar 

  28. von Rhein, A., Liebig, J., Janker, A., Kästner, C., Apel, S.: Variability-aware static analysis at scale: An empirical study. ACM Trans. Softw. Eng. Methodol. 27(4), 18:1–18:33 (2018). https://doi.org/10.1145/3280986

  29. Solar-Lezama, A.: Program sketching. STTT 15(5-6), 475–495 (2013). https://doi.org/10.1007/s10009-012-0249-7

  30. Solar-Lezama, A., Rabbah, R.M., Bodík, R., Ebcioglu, K.: Programming by sketching for bit-streaming programs. In: Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language Design and Implementation. pp. 281–294. ACM (2005). https://doi.org/10.1145/1065010.1065045

  31. Urban, C.: Static Analysis by Abstract Interpretation of Functional Temporal Properties of Programs. (Analyse Statique par Interprétation Abstraite de Propriétés Temporelles Fonctionnelles des Programmes). Ph.D. thesis, École Normale Supérieure, Paris, France (2015), https://tel.archives-ouvertes.fr/tel-01176641

  32. Urban, C., Miné, A.: A decision tree abstract domain for proving conditional termination. In: Static Analysis - 21st International Symposium, SAS 2014. Proceedings. LNCS, vol. 8723, pp. 302–318. Springer (2014). https://doi.org/10.1007/978-3-319-10936-7_19

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandar S. Dimovski .

Editor information

Editors and Affiliations

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and Permissions

Copyright information

© 2022 The Author(s)

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Dimovski, A.S. (2022). Quantitative Program Sketching using Lifted Static Analysis. In: Johnsen, E.B., Wimmer, M. (eds) Fundamental Approaches to Software Engineering. FASE 2022. Lecture Notes in Computer Science, vol 13241. Springer, Cham. https://doi.org/10.1007/978-3-030-99429-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99429-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99428-0

  • Online ISBN: 978-3-030-99429-7

  • eBook Packages: Computer ScienceComputer Science (R0)