Skip to main content

Structure and Dynamics of Bio- and Macromolecules

  • Chapter
  • First Online:
Dynamics of Systems on the Nanoscale

Abstract

This chapter overviews the computational techniques and theoretical models used for exploring structure and dynamics of complex biomolecular systems at the atomistic level of detail. Particular focus is put on the application of statistical mechanics methods combined with the classical molecular mechanics approach to the description of phase transitions in polypetides and proteins. The molecular mechanics approach permits simulating a large variety of biomacromolecular systems (both in vacuum and in ubiquitous environments) and their transformations at different thermal and biologically relevant conditions as well as at various external stresses. This chapter presents several illustrative examples of such computational research related to protein folding, unbinding of protein-ligand complex, and DNA unzipping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Russell, D., Lasker, K., Phillips, J., Schneidman-Duhovny, D., Velaszquez-Muriel, J., Sali, A.: The structural dynamics of macromolecular processes. Curr. Opin. Cell Biol. 21, 97–108 (2009)

    Article  Google Scholar 

  2. Casella, M., Peraro, M.: Challenges and perspectives in biomolecular simulations: from the atomistic picture to multiscale modeling. Curr. Opin. Struct. Biol. 18, 630–640 (2008)

    Google Scholar 

  3. Solov’yov, A.V., Surdutovich, E., Scifoni, E., Mishustin, I., Greiner, W.: Physics of ion beam cancer therapy: a multiscale approach. Phys. Rev. E 79, 011909 (2009)

    Google Scholar 

  4. Surdutovich, E., Solov’yov, A.V.: Multiscale approach to the physics of radiation damage with ions. Eur. Phys. J. D 68, 353 (2014)

    Google Scholar 

  5. MacKerell, A.D., Jr., Bashford, D., Bellott, M., Dunbrack, R.L., Jr., Evanseck, J., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, W.E., III., Roux, B., Schlenkrich, M., Smith, J., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., Karplus, M.: All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998)

    Article  Google Scholar 

  6. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kalé, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comp. Chem. 26, 1781–1802 (2005)

    Article  Google Scholar 

  7. Case, D.A., Cheatham, T.E., III., Darden, T., Gohlke, H., Luo, R., Merz, K.M., Jr., Onufriev, A., Simmerling, C., Wang, B., Woods, R.J.: The Amber biomolecular simulation programs. J. Comp. Chem. 26, 1668–1688 (2005)

    Article  Google Scholar 

  8. van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J.: GROMACS: fast, flexible, and free. J. Comp. Chem. 26, 1701–1718 (2005)

    Article  Google Scholar 

  9. Scott, W.R.P., van Gunsteren, W.F.: The GROMOS software package for biomolecular simulations. In: Methods and Techniques in Computational Chemistry: METECC-95, pp. 397–434. STEF, Cagliari, Italy (1995)

    Google Scholar 

  10. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)

    Article  Google Scholar 

  11. Sushko, G.B., Solov’yov, I.A., Verkhovtsev, A.V., Volkov, S.N., Solov’yov, A.V.: Studying chemical reactions in biological systems with MBN Explorer: implementation of molecular mechanics with dynamical topology. Eur. Phys. J. D 70, 12 (2016)

    Google Scholar 

  12. Solov’yov, I.A., Yakubovich, A.V., Nikolaev, P.V., Volkovets, I., Solov’yov, A.V.: MesoBioNano Explorer - a universal program for multiscale computer simulations of complex molecular structure and dynamics. J. Comput. Chem. 33, 2412–2439 (2012)

    Article  Google Scholar 

  13. Yakubovich, A.V., Solov’yov, I.A., Solov’yov, A.V., Greiner, W.: Ab initio theory of helix\(\leftrightarrow \)coil phase transition. Eur. Phys. J. D 46, 215–225 (2008)

    Article  ADS  Google Scholar 

  14. Solov’yov, I.A., Yakubovich, A.V., Solov’yov, A.V., Greiner, W.: \(\alpha \)-helix\(\leftrightarrow \)random coil phase transition: analysis of ab initio theory predictions. Eur. Phys. J. D 46, 227–240 (2008)

    ADS  Google Scholar 

  15. Go, N., Scheraga, H.A.: Analysis of the contribution of internal vibrations to the statistical weights of equilibrium conformations of macromolecules. J. Chem. Phys. 51, 4751–4767 (1969)

    Article  ADS  Google Scholar 

  16. Landau, L.D., Lifshitz, E.M.: Course of Theoretical Physics, vol. 5. Part I. Butterworth-Heinemann, Oxford, Statistical Physics (1980)

    Google Scholar 

  17. Rubin, A.B.: Fundamentals of Biophysics. Wiley (2014)

    Google Scholar 

  18. Yakubovich, A., Solov’yov, I.A., Solov’yov, A.V., Greiner, W.: Conformational changes in glycine tri- and hexapolipeptides. Eur. Phys. J. D 39, 23–34 (2006)

    Article  ADS  Google Scholar 

  19. Solov’yov, I.A., Yakubovich, A.V., Solov’yov, A.V., Greiner, W.: Ab initio study of alanine polypeptide chain twisting. Phys. Rev. E 73, 021916 (2006)

    Google Scholar 

  20. Solov’yov, I.A., Yakubovich, A.V., Solov’yov, A.V., Greiner, W.: Potential energy surface for alanine polypeptide chains. J. Exp. Theor. Phys. 102, 314–326 (2006)

    Article  ADS  Google Scholar 

  21. Zimm, B., Bragg, J.: Theory of the phase transition between helix and random coil in polypeptide chains. J. Chem. Phys. 31, 526–535 (1959)

    Article  ADS  Google Scholar 

  22. Finkelstein, A.V., Ptitsyn, O.B.: Protein Physics. A Course of Lectures. Elsevier Books, Oxford (2002)

    Google Scholar 

  23. Prabhu, N.V., Sharp, K.A.: Heat capacity in proteins. Annu. Rev. Phys. Chem. 56, 521–548 (2005)

    Article  ADS  Google Scholar 

  24. Irbäck, A., Sjunnesson, F.: Folding thermodynamics of three \(\beta \)-sheet peptides: a model study. Proteins 56, 110–116 (2004)

    Article  Google Scholar 

  25. Irbäck, A., Samuelsson, B., Sjunnesson, F.: Thermodynamics of \(\alpha \)- and \(\beta \)-structure formation in proteins. Biophys. J. 85, 1466–1473 (2003)

    Article  Google Scholar 

  26. Scholtz, J.M., Marqusee, S., Baldwin, R.L., York, E.J., Stewart, J.M., Santoro, M., Bolen, D.W.: Calorimetric determination of the enthalpy change for the alpha-helix to coil transition of an alanine peptide in water. Proc. Natl. Acad. Sci. U.S.A. 88, 2854–2858 (1991)

    Article  ADS  Google Scholar 

  27. Lednev, I.K., Karnoup, A.S., Sparrow, M.C., Asher, S.A.: Transient UV Raman spectroscopy finds no crossing barrier between the peptide \(\alpha \)-helix and fully random coil conformation. J. Am. Chem. Soc. 123, 2388–2392 (2001)

    Article  Google Scholar 

  28. Thompson, P.A., Eaton, W.A., Hofrichter, J.: Laser temperature jump study of the helix\(\leftrightarrow \)coil kinetics of an alanine peptide interpreted with a ‘Kinetic Zipper’ model. Biochemistry 36, 9200–9210 (1997)

    Article  Google Scholar 

  29. Williams, S., Thimothy, R.G., Causgrove, P., Fang, K.S., Callender, R.H., Woodruff, W.H., Dyer, R.B.: Fast events in protein folding: helix melting and formation in a small peptide. Biochemistry 35, 691–697 (1996)

    Article  Google Scholar 

  30. Yakubovich, A.V., Solov’yov, I.A., Solov’yov, A.V., Greiner, W.: Phase transitions in polypeptides: analysis of energy fluctuations. Eur. Phys. J. D 51, 25–32 (2009)

    Article  ADS  Google Scholar 

  31. Yakubovich, A.V., Solov’yov, A.V.: Quantitative thermodynamic model for globular protein folding. Eur. Phys. J. D 68, 145 (2014)

    Google Scholar 

  32. Yakubovich, A.V., Solov’yov, I.A., Solov’yov, A.V., Greiner, W.: Phase transition in polypeptides: a step towards the understanding of protein folding. Eur. Phys. J. D 40, 363–367 (2006)

    Article  ADS  Google Scholar 

  33. Solov’yov, I.A., Yakubovich, A.V., Solov’yov, A.V., Greiner, W.: On the fragmentation of biomolecules: fragmentation of alanine dipeptide along the polypeptide chain. J. Exp. Theor. Phys. 103, 463–471 (2006)

    Article  ADS  Google Scholar 

  34. Kumar, S., Tsai, C.J., Nussinov, R.: Maximal stabilities of reversible two-state proteins. Biol. Cyber. 41, 5359–5374 (2002)

    Google Scholar 

  35. Griffith, J.H., Scheraga, H.A.: Statistical thrmodynamics of aquesous solutions. I. Water structure, solutions with non-polar solutes, and hydrophobic ineractions. J. Mol. Struct. 682, 97–113 (2004)

    Google Scholar 

  36. Bakk, A., Hye, J.S., Hansen, A.: Apolar and polar solvation thermodynamics related to the protein unfolding process. Biophys. J. 82, 713–719 (2002)

    Article  Google Scholar 

  37. Griko, Y.V., Privalov, P.L., Aturtevant, J.M., Venyaminov, S.V.: Cold denaturation of staphyloccocal nuclease. Proc. Natl. Acad. Sci. U.S.A. 85, 3343–3347 (1988)

    Article  ADS  Google Scholar 

  38. Privalov, P.L.: Thermodynamics of protein folding. J. Chem. Thermodyn. 29, 447–474 (1997)

    Article  Google Scholar 

  39. Chen, J., Lu, Z., Sakon, J., Stites, W.E.: Increasing the thermostability of staphylococcal nuclease: implications for the origin of protein thermostability. J. Mol. Biol. 303, 125–130 (2000)

    Article  Google Scholar 

  40. Evans, S.V., Brayer, G.D.: High-resolution study of the three-dimensional structure of horse heart metmyoglobin. J. Mol. Biol. 213, 885–897 (1990)

    Article  Google Scholar 

  41. Cotton, F.A., Hazen Jr., E.E., Legg, M.J.: Staphylococcal nuclease: proposed mechanism of action based on structure of enzyme-thymidine 3’,5’-bisphosphate-calcium ion complex at 1.5-Å resolution. Proc. Natl. Acad. Sci. U.S.A. 76, 2551–2555 (1979)

    Google Scholar 

  42. Zhou, H.X.: Residual charge interactions in unfolded staphylococcal nuclease can be explained by the Gaussian-chain model. Biophys. J. 83, 2981–2986 (2002)

    Article  ADS  Google Scholar 

  43. Collman, J.P., Boulatov, R., Sunderland, C.J., Fu, L.: Functional analogues of cytochrome c oxidase, myoglobin, and hemoglobin. Chem. Rev. 104, 561–588 (2004)

    Article  Google Scholar 

  44. Schortle, D., Ackerman, M.S.: Persistence of native-like topology in a denatured protein in 8 M urea. Science 293, 487–489 (2001)

    Article  Google Scholar 

  45. Henriques, E., Solov’yov, A.V.: A rational method for probing macromolecules dissociation: the antibody-hapten system. Eur. Phys. J. D 46, 471–481 (2008)

    Article  ADS  Google Scholar 

  46. Wedemayer, G.J., Patten, P.A., Wang, L.H., Schultz, P.G., Stevens, R.C.: Structural insights into the evolution of an antibody combining site. Science 276, 1665–1669 (1997)

    Article  Google Scholar 

  47. Manser, T.: Textbook germinal centers? J. Immunol. 172, 3369–3375 (2004)

    Article  Google Scholar 

  48. Nelson, D.L., Cox, M.M.: Lehninger Principles of Biochemistry. W.H. Freeman and Company, New York (2005)

    Google Scholar 

  49. Schwesinger, F., Ros, R., Strunz, T., Anselmetti, D., Güntherodt, H.J., Honegger, A., Jermutus, L., Tiefenauer, L., Plückthun, A.: Unbinding forces of single antibody-antigen complexes correlate with their thermal dissociation rates. Proc. Natl. Acad. Sci. U.S.A. 97, 9967–9971 (2000)

    Article  ADS  Google Scholar 

  50. Foote, J., Eisen, H.N.: Kinetic and affinity limits on antibodies produced during immune responses. Proc. Natl. Acad. Sci. U.S.A. 92, 1254–1256 (1995)

    Article  ADS  Google Scholar 

  51. Jimenez, R., Salazar, G., J. Yin, T.J., Romesberg, F.E.: Protein dynamics and the immunological evolution of molecular recognition. Proc. Natl. Acad. Sci. U.S.A. 101, 3803–3808 (2004)

    Google Scholar 

  52. Hinterdorfer, P., Baumgartner, W., Gruber, H.J., Schlicher, K., Schindler, H.: Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc. Natl. Acad. Sci. U.S.A. 93, 3477–3481 (1996)

    Article  ADS  Google Scholar 

  53. Dammer, U., Hegner, M., Anselmetti, D., Wagner, P., Dreier, M., Huber, W., Güntherodt, H.J.: Specific antigen/antibody interactions measured by force microscopy. Biophys. J. 70, 2437–2441 (1996)

    Article  ADS  Google Scholar 

  54. Allen, S., Chen, X., Davies, J., Davies, M., Dawkes, A.C., Edwards, J.C., Roberts, C.J., Sefton, J., Tendler, S.J.B., Williams, P.M.: Detection of antigen-antibody binding events with the atomic force microscope. Biochemistry 36, 7457–7463 (1997)

    Article  Google Scholar 

  55. Sulchek, T.A., Friddle, R.W., Langry, K., Lau, E.Y., Albrecht, H., Ratto, T.V., DeNardo, S.J., Colvin, M.E., Noy, A.: Dynamic force spectroscopy of parallel individual Mucin1-antibody bonds. Proc. Natl. Acad. Sci. U.S.A. 102, 16638–16643 (2005)

    Article  ADS  Google Scholar 

  56. Grubmüller, H.: Force probe molecular dynamics simulations. In: Protein-Ligand Interactions, pp. 493–515. The Human Press Inc., NJ USA (2005)

    Google Scholar 

  57. Solov’yov, A.V., Connerade, J.P., Greiner, W.: In: Latest Advances in Atomic Cluster Collisions. Imperial College Press, London (2004)

    Google Scholar 

  58. Obolensky, O.I., Lyalin, A., Solov’yov, A.V., Greiner, W.: Geometrical and statistical effects in the fission process of metal clusters. Phys. Rev. B 72, 085433 (2005)

    Google Scholar 

  59. Zimmermann, J., Oakman, E.L., Thorpe, I.F., Shi, X., Abbyad, P., Brooks, C.L., I., Boxer, S.G., Romesberg, F.E.: Antibody evolution constrains conformational heterogeneity by tailoring protein dynamics. Proc. Natl. Acad. Sci. U.S.A. 103, 13722–13727 (2006)

    Google Scholar 

  60. Demirel, M.C., Lesk, A.M.: Molecular forces in antibody maturation. Phys. Rev. Lett. 95, 208106 (2005)

    Google Scholar 

  61. Voss, E.W., Jr.: Kinetic measurements of molecular interactions by spectrofluorometry. J. Mol. Recognit. 6, 51–58 (1993)

    Article  Google Scholar 

  62. Midelfort, K.S., Hernandez, H.H., Lippow, S.M., Tidor, B., Drennan, C.L., Wittrup, K.D.: Substantial energetic improvement with minimal structural perturbation in a high affinity mutant antibody. J. Mol. Biol. 343, 685–701 (2004)

    Article  Google Scholar 

  63. Herron, J.N., He, X.M., Mason, M.L., Voss, E.W., Jr., Edmundson, A.B.: Three-dimensional structure of a fluorescein-Fab complex crystallized in 2-methyl-2,4-pentanediol. Proteins 5, 271–280 (1989)

    Article  Google Scholar 

  64. Whitlow, M., Howard, A.J., Wood, J.F., Voss Jr., E.W., Hardman, K.D.: 1.85 Å structure of anti-fluorescein 4-4-20 Fab. Protein Eng. 8, 749–761 (1995)

    Google Scholar 

  65. Jung, S., Plückthun, A.: Improving in vivo folding and stability of a single-chain Fv antibody fragment by loop grafting. Protein Eng. 10, 959–966 (1997)

    Article  Google Scholar 

  66. Fogolari, F., Brigo, A., Molinari, H.: The Poisson-Boltzmann equation for biomolecular electrostatics: a tool for structural biology. J. Mol. Recognit. 15, 377–392 (2002)

    Article  Google Scholar 

  67. Fogolari, F., Zuccato, P., Esposito, G., Viglino, P.: Biomolecular electrostatics with the linearized Poisson-Boltzmann equation. Biophys. J. 76, 1–16 (1999)

    Article  Google Scholar 

  68. Baker, N.A., Sept, D., Joseph, S., Holst, M.J., MacCammon, J.A.: Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. U.S.A. 98, 10037–10041 (2001)

    Article  ADS  Google Scholar 

  69. Hänggi, P., Talkner, P., Borkovec, M.: Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  70. Mummert, M.E., Voss, E.W., Jr.: Transition-state theory and secondary forces in antigen-antibody complexes. Biochemistry 35, 8187–8192 (1996)

    Article  Google Scholar 

  71. Boder, E.T., Midelfort, K.S., Wittrup, K.D.: Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc. Natl. Acad. Sci. U.S.A. 97, 10701–10705 (2000)

    Article  ADS  Google Scholar 

  72. Watson, J.D.: Molecular Biology of the Gene. Benjamin, W. A (1965)

    Google Scholar 

  73. Saenger, W.: Principles of Nucleic Acid Structure. Springer (1984)

    Google Scholar 

  74. Bell, S.D.: DNA primase acts as a molecular brake in DNA replication. Nature 439, 543–542 (2006)

    ADS  Google Scholar 

  75. Essevaz-Roulet, B., Bockelmann, U., Heslot, F.: Mechanical separation of the complementary strands of DNA. Proc. Natl. Acad. Sci. U.S.A. 94, 11935–11940 (1997)

    Article  ADS  Google Scholar 

  76. Bockelmann, U., Thomen, P., Essevaz-Roulet, B., Visnoff, V., Heslot, F.: Unzipping DNA with optical tweezers: high sequence sensitivity and force flips. Biophys. J. 82, 1537 (2002)

    Google Scholar 

  77. Danilowicz, C., Kafri, Y., Conroy, R.S., Coljee, V.W., Weeks, J., Prentiss, M.: DNA unzipped under a constant force exhibits multiple metastable intermediates. Proc. Natl. Acad. Sci. U.S.A. 100, 1694–1699 (2003)

    Article  ADS  Google Scholar 

  78. Danilowicz, C., Kafri, Y., Conroy, R.S., Coljee, V.W., Weeks, J., Prentiss, M.: Measurement of the phase diagram of DNA unzipping in the temperature-force plane. Phys. Rev. Lett. 93, 078101 (2004)

    Google Scholar 

  79. Lubensky, D.K., Nelson, D.R.: Single molecule statistics and the polynucleotide unzipping transition. Phys. Rev. E 65, 031917 (2002)

    Google Scholar 

  80. Cocco, S., Monasson, R., Marco, J.F.: Force and kinetic barriers to unzipping of the DNA double helix. Proc. Natl. Acad. Sci. U.S.A. 98, 8608–8613 (2001)

    Article  ADS  Google Scholar 

  81. Voulgarakis, N.K., Redondo, A., Bishop, A.R., Rasmussen, K.Ø.: Probing the mechanical unzipping of DNA. Phys. Rev. Lett. 96, 248101 (2006)

    Google Scholar 

  82. Volkov, S.N., Solov’yov, A.V.: The mechanism of DNA mechanical unzipping. Eur. Phys. J. D 54, 657–666 (2009)

    Article  ADS  Google Scholar 

  83. Santosh, M., Maiti, P.: Force induced DNA melting. J. Phys.: Condens. Matter 21, 034113 (2009)

    Google Scholar 

  84. Volkov, S.N., Paramonova, E.V., Yakubovich, A.V., Solov’yov, A.V.: Micromechanics of base pair unzipping in the DNA duplex. J. Phys.: Condens. Matter 24, 035104 (2012)

    Google Scholar 

  85. Drew, H.R., Wing, R.M., Takano, T., Broka, C., Tanaka, S., Itakura, K., Dickerson, R.E.: Structure of a B-DNA dodecamer: conformation and dynamics. Proc. Natl. Acad. Sci. U.S.A. 78, 2179–2183 (1981)

    Article  ADS  Google Scholar 

  86. Sotomayor, M., Schulten, K.: Single-molecular experiments in vitro and in silico. Science 316, 1144–1148 (2007)

    Article  ADS  Google Scholar 

  87. Sotomayor, M., Corey, D.P., Schulten, K.: In search of the hair-cell gating spring: elastic properties of ankyrin and cadherin repeats. Science 13, 669–682 (2005)

    Google Scholar 

  88. Gullingsrud, J., Schulten, K.: Lipid bilayer pressure profiles and mechanosensitive channel gating. Biophys. J. 86, 3496–3509 (2004)

    Article  Google Scholar 

  89. Rapaport, D.C.: The Art of Molecular Dynamics Simulation. Cambridge University Press (2004)

    Google Scholar 

  90. Frenkel, D., Smit, B.J.: Understanding Molecular Simulation, 2nd edn. Academic Press, San Diego, San Francisco, New York, Boston, London, Sydney, Tokyo (2002)

    Google Scholar 

  91. Lavery, R., Moakher, M., Maddocks, J.H., Petkeviciute, D., Zakrzewska, K.: Conformational analysis of nucleic acids revisited: curves+. Nucl. Acids Res. 37, 5917–5929 (2009)

    Article  Google Scholar 

  92. Levinthal, C., Crane, H.R.: On the unwinding of DNA. Proc. Natl. Acad. Sci. U.S.A. 42, 436–438 (1956)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey V. Verkhovtsev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verkhovtsev, A.V., Solov’yov, I.A., Solov’yov, A.V. (2022). Structure and Dynamics of Bio- and Macromolecules. In: Solov'yov, I.A., Verkhovtsev, A.V., Korol, A.V., Solov'yov, A.V. (eds) Dynamics of Systems on the Nanoscale. Lecture Notes in Nanoscale Science and Technology, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-030-99291-0_4

Download citation

Publish with us

Policies and ethics