Abstract
The chapter is devoted to the discussion of possibilities to construct novel powerful light sources (LSs) operating in the sub-angstrom wavelength range (the corresponding energies of radiation from hundreds of keV up to tens GeV region) which is far beyond the limits achievable in modern facilities (synchrotrons, undulators, and free-electron lasers, XFEL). The novel LSs (synchrotron-like, undulator-like) are based on the channeling phenomenon for ultra-relativistic particles in oriented crystals (linear, bent, and periodically bent). These LSs can emit intensive radiation in gamma-ray region. Additionally, the crystal undulator LS has a potential to generate coherent laser-type radiation with wavelengths orders of magnitudes less than 1 Angstrom. Such LSs will have many applications in the basic sciences and the life sciences. Illustrative theoretical and computational results obtained as well as the overview of the relevant experimental activities and achievements are discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
In literature, one can find another term for this type of radiation,—magnetic bremsstrahlung. This term is more frequently used in application to the astrophysical problems, see Ref. [173].
- 3.
- 4.
Fore the sake of comparison we also match our data to the brilliance available at the XFEL facilities for much lower energy of the emitted radiation.
- 5.
To be specific, we assume the emission in the forward direction. This is why the longitudinal coordinate, i.e., the one along the undulator axis, plays the key role.
References
Emma, P., Akre, R., Arthur, J., Bionta, R., Bostedt, C., et al.: Nat. Photonics 4, 641 (2010)
Bostedt, Ch., Boutet, S., Fritz, D.M., Huang, Z., Lee, H.J., et al.: Rev. Mod. Phys. 88, 015007 (2016)
Materlik, G., Tschentscher, Th. (eds.): TESLA technical design report. Part V. The X-ray free electron laser. http://tesla.desy.de/new_pages/TDR_CD/PartV/fel.html (2001)
LCLS web site: https://slacportal.slac.stanford.edu/sites/lcls_public/Pages/Default.aspx
McNeil, B.W.J., Thompson, N.R.: Nat. Photonics 4, 814 (2010)
Di Mitri, S., Allaria, E.M., Cinquegrana, P., Craievich, P., Danailov, M., et al.: Proc. SPIE 8078, 807802 (2011)
Couprie, M.E.: J. Electr. Spectrosc. Rel. Phenomena 196, 3 (2014)
Schreiber, S., Faatz, F.: High Power Laser Science and Engineering, vol. 3, p. e20 (2015)
Jaeschke, E.J., Khan, Sh., Schneider, J.R., Hastings, J.B. (eds.): Synchrotron Light Sources and Free-Electron Lasers. Springer, Switzerland (2016)
Seddon, E.A., Clarke, J.A., Dunning, D.J., Masciovecchio, C., Milne, C.J., et al.: Rep. Prog. Phys. 80, 115901 (2017)
Milne, Ch.J., Schietinger, Th., Aiba, M., Alarcon, A., Alex, J., et al.: Appl. Sci. 7, 720 (2017)
Doerr, A.: Nature Meth. 13, 33 (2018)
SACLA web site: http://xfel.riken.jp/eng/index.html, http://xfel.riken.jp/eng/pdf/XFELeng.pdf
Ayvazyan, V., Baboi, N., Bohnet, I., Brinkmann, R., Castellano, M., et al.: Europ. Phys. J. D 20, 149 (2002)
Yabashi, M., Tanaka, H.: Nat. Photonics 11, 12 (2017)
Xenon beams light path to gamma factory. CERN Courier (13 Oct. 2017). https://cerncourier.com/xenon-beams-light-path-to-gamma-factory/
Krasny, M.W.: The Gamma Factory proposal for CERN. arXiv preprint arXiv:1511.07794 (2015)
Krasny, M.W., Martens, A., Dutheil, Y.: Gamma factory proof-of-principle experiment: letter of intent. CERN-SPSC-2019-031/SPSC-I-253, 25/09/2019. http://cds.cern.ch/record/2690736/files/SPSC-I-253.pdf
Olive, K.A., et al. (Particle Data Group).: Review of particle physics. Chin. Phys. C 38, 090001 (2014)
Korol, A.V., Solov’yov, A.V.: Crystal-based intensive gamma-ray light sources. Europ. Phys. J. D 74, 201 (2020)
Korol, A.V., Solov’yov, A.V., Greiner, W.: J. Phys. G Nucl. Part. Phys. 24, L45–L53 (1998)
Korol, A.V., Solov’yov, A.V., Greiner, W.: Int. J. Mod. Phys. E 13, 867–916 (2004)
Korol, A.V., Solov’yov, A.V., Greiner, W.: Int. J. Mod. Phys. E 8, 49–100 (1999)
Greiner, W., Korol, A.V., Kostyuk, A., Solov’yov, A.V.: Vorrichtung und Verfahren zur Erzeugung electromagnetischer Strahlung. Application for German Patent, June 14, Ref.: 10 2010 023 632.2 (2010)
Korol, A.V., Solov’yov, A.V., Greiner, W.: Channeling and Radiation in Periodically Bent Crystals, 2nd edn. Springer, Berlin, Heidelberg (2014)
Sushko, G.B., Korol, A.V., Solov’yov, A.V.: St. Petersburg Polytechnical Uni. J.: Phys. Math. 1, 341 (2015)
Lindhard, J.: K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 34, 1–64 (1965)
Gemmell, D.S.: Rev. Mod. Phys. 46, 129–227 (1974)
Biryukov, V.M., Chesnokov, Yu.A., Kotov, V.I.: Crystal Channeling and Its Application at High-Energy Accelerators. Springer, Berlin/Heidelberg (1996)
Andersen, H.H., Rehn, L.E. (eds.): Channeling and other crystal effects at relativistic energy. Nucl. Instrum. Methods B 119 (Topical Issue), 1–315 (1996)
Bandiera, L., Bagli, E., Germogli, G., Guidi, V., Mazzolari, A., Backe, H., Lauth, W., et al.: Phys. Rev. Lett. 115, 025504 (2015)
Solov’yov, I.A., Korol, A.V., Solov’yov, A.V.: Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer. Springer, Cham, Switzerland (2017)
Uggerhøj, U.I.: Rev. Mod. Phys. 77, 1131–1171 (2005)
Kumakhov, M.A.: Phys. Lett. 57A, 17–18 (1976)
Terhune, R.W., Pantell, R.H.: Appl. Phys. Lett. 30, 265 (1977)
Brau, C.A., Choi, B.-K., Jarvis, J.D., Lewellen, J.W., Piot, P.: Synchrotron Radiat. News 25, 20 (2012)
Wagner, W., Azadegan, B., Sobiella, M., Steiner, J., Zeil, K., Pawelke, J.: Nucl. Instrum. Meth. B 266, 327 (2008)
SLAC Site Office: Preliminary Conceptual Design Report for the FACET-II Project at SLAC National Accelerator Laboratory. Report SLAC-R-1067, SLAC (2015)
Tanabashi, M., et al., (Particle Data Group): Review of particle physics. Phys. Rev. D 98, 030001 (2018)
Akai, K., Furukawa, K., Koiso, K.: SuperKEKB Collider. Preprint at arXiv:1809.01958 (2018)
The CEPC Study Group. CEPC Conceptual Design Report. Preprint at arXiv:1809.00285 (2018)
Tsyganov, E.N.: Some aspects of the mechanism of a charge particle penetration through a monocrystal. Fermilab Preprint TM-682. Fermilab, Batavia (1976); Estimates of cooling and bending processes for charged particle penetration through a monocrystal. Fermilab Preprint TM-684. Fermilab, Batavia (1976)
Elishev, A.F., Filatova, N.A., Golovatyuk, V.M., Ivanchenko, I.M., Kadyrov, R.B., et al.: Phys. Lett. B 88, 387 (1979)
Scandale, W., Fiorini, M., Guidi, V., Mazzolari, A., Vincenzi, D., et al.: Phys. Lett. B 719, 70 (2013)
Scandale, W., Carnera, A., Mea, G.D., De Salvador, D., Milan, R., et al.: Phys. Rev. ST AB 11, 063501 (2008)
Scandale, W., Vomiero, A., Baricordi, S., et al.: Phys. Rev. Lett. 101, 164801 (2008)
Scandale, W., Vomiero, A., Baricordi, S., Dalpiaz, P., Fiorini, M., et al.: Phys. Rev. A 79, 012903 (2009)
Scandale, W., Vomiero, A., Bagli, E., et al.: Phys. Lett. B 681, 233–236 (2009)
Scandale, W., Vomiero, A., Bagli, E., et al.: Phys. Lett. B 693, 545–550 (2010)
Scandale, W., Arduini, G., Assmann, R., et al.: Phys. Lett. B 692, 78–82 (2010)
Scandale, W., Vomiero, A., Bagli, E., et al.: Europhys. Lett. 93, 56002 (2011)
Fliller, R.P., III., Drees, A., Gassner, D., Hammons, L., McIntyre, G., et al.: Phys. Rev. ST AB 9, 013501 (2006)
Wienands, U., Markiewicz, T.W., Nelson, J., Noble, R.J., Turner, J.L., et al.: SLAC Scientific Publications (2014) SLAC-PUB-15952
Wistisen, T.N., Uggerhøj, U.I., Wienands, U., Markiewicz, T.W., Noble, R.J., et al.: Phys. Rev. Acc. Beams 19, 071001 (2016)
Sytov, A.I., Bandiera, L., De Salvador, D., Mazzolari, A., Bagli, E., et al.: Eur. Phys. J. C 77, 901 (2017)
Wienands, U., Markiewicz, T.W., Nelson, J., Noble, R.J., Turner, J.L., et al.: Phys. Rev. Lett. 114, 074801 (2015)
Wienands, U., Gessner, S., Hogan, M.J., Markiewicz, T., Smith, T., Sheppard, J., et al.: Int. J. Mod. Phys. A 34, 1943006 (2019)
Wienands, U., Gessner, S., Hogan, M.J., Markiewicz, T.W., Smith, T., et al.: Nucl. Instrum Meth. B 402, 11 (2017)
Bandiera, L., Kyryllin, I.V., Brizzolari, C., Camattari, R., Charitonidis, N., De Salvador, D., et al.: Europ. Phys. J. C 81(3), 1–10 (2021)
Taratin, A.M., Vorobiev, S.A.: Nucl. Instrum. Meth. B 31, 551–557 (1988)
Taratin, A.M., Vorobiev, S.A.: Nucl. Instrum. Meth. B 42, 41–45 (1989)
Bandiera, L., Sytov, A., De Salvador, D., Mazzolari, A., Bagli, E., Camattari, R., et al.: Europ. Phys. J. C 81(3), 1–9 (2021)
Polozkov, R.G., Ivanov, V.K., Sushko, G.B., Korol, A.V., Solov’yov, A.V.: Eur. Phys. J. D 68, 268 (2014)
Mazzolari, A., Bagli, E., Bandiera, L., Guidi, V., Backe, H., Lauth, W., et al.: Phys. Rev. Lett. 112, 135503 (2014)
Shen, H., Zha, Q., Zhang, F.S., Sushko, G.B., Korol, A.V., Solov’yov, A.V.: Nucl. Instrum. Meth. B 424, 26 (2018)
Kostyuk, A.: Phys. Rev. Lett. 110, 115503 (2013)
Wistisen, T.N., Andersen, K.K., Yilmaz, S., Mikkelsen, R., Hansen, J.L., Uggerhøj, U.I., Lauth, W., Backe, H.: Phys. Rev. Lett. 112, 254801 (2014)
Uggerhoj, U.I., Wistisen, T.N., Hansen, J.L., Lauth, W., Klag, P.: Eur. J. Phys. D 71, 124 (2017)
Korol, A.V., Bezchastnov, V.G., Sushko, G.B., Solov’yov, A.V.: Nucl. Instrum. Meth. B 387, 41 (2016)
Uggerhøj, U.I., Wistisen, T.N.: Nucl. Instrum Meth. B 355, 35 (2015)
Bezchastnov, V.G., Korol, A.V., Solov’yov, A.V.: J. Phys. B 47, 195401 (2014)
Baranov, V.T., Bellucci, S., Biryukov, V.M., et al.: JETP Lett. 82, 562–564 (2005)
Baranov, V.T., Bellucci, S., Biryukov, V.M., Britvich, G.I., Chepegin, V.N., et al.: Nucl. Instrum. Meth. B 252, 32 (2006)
Backe, H., Krambrich, D., Lauth, W., Buonomo, B., Dabagov, S.B., et al.: Nuovo Cimento C 34, 175 (2011)
Quintieri, L., Buonomo, B., Dabagov, S.B., Mazzitelli, G., Valente, P., Backe, H., Valente, P., Backe, H., Kunz, P., Lauth, W.: Positron channeling at the DA\(\Phi \)NE BTF facility: the CUP experiment. In: Dabagov, S.B., Palumbo, L., Zichichi, A. (eds.) Proceedings of the 51st Workshop Charged and Neutral Particles Channeling Phenomena Channeling 2008, Erice, Italy, Oct 2008, pp. 319–330. World Scientific, Singapore/Hackensack (2010). ISBN 9789814307017
Bellucci, S., Bini, S., Biryukov, V.M., Chesnokov, Yu.A., et al.: Phys. Rev. Lett. 90, 034801 (2003)
Afonin, A.G., Baranov, V.T., Bellucci, S., Biryukov, V.M., Britvich, G.I., et al.: Nucl. Instrum. Methods Phys. Res. B 234, 122–127 (2005)
Tabrizi, M., Korol, A.V., Solov’yov, A.V., Greiner, W.: Phys. Rev. Lett. 98, 164801 (2007)
Tabrizi, M., Korol, A.V., Solov’yov, A.V., Greiner, W.: J. Phys. G: Nucl. Part. Phys. 34, 1581–1593 (2007)
Backe, H., Krambrich, D., Lauth, W., Hansen, J.L., Uggerhøj, U.I.: Nuovo Cimento C 34, 157–165 (2011)
Backe, H., Krambrich, D., Lauth, W., Andersen, K.K., Hansen, J.L., Uggerhøj, U.I.: Nucl. Instum. Meth. B 309, 37 (2013)
Bagli, E., Bandiera, L., Bellucci, V., Berra, A., Camattari, R., et al.: Eur. Phys. J. C 74, 3114 (2014)
Kostyuk, A., Korol, A.V., Solov’yov, A.V., Greiner, W.: Nucl. Instrum. Method B 266, 972–987 (2008)
Balling, P., Esberg, J., Kirsebom, K., Le, D.Q.S., Uggerhøj, U.I., Connell, S.H., Härtwig, J., Masiello, F., Rommeveaux, A.: Nucl. Instrum Meth. B 267, 2952 (2009)
Guidi, V., Antonioni, A., Baricordi, S., Logallo, F., Malagù, C., et al.: Nucl. Instrum. Meth. B 234, 40–46 (2005)
Lanzoni, L., Mazzolari, A., Guidi, V., Tralli, A., Martinelli, G.: Int. J. Eng. Sci. 46, 917–928 (2008)
Lanzoni, L., Radi, E.: Int. J. Eng. Sci. 46, 1402–1412 (2009)
Guidi, V., Mazzolari, A., Martinelli, G., Tralli, A.: Appl. Phys. Lett. 90, 114107 (2007)
Guidi, V., Lanzoni, L., Mazzolari, A.: Thin Solid Films 520, 1074 (2011)
Bellucci, V., Camattari, R., Guidi, V., Mazzolari, A., Paterno, G., Mattei, G., Scian, C., Lanzoni, L.: Appl. Phys. Lett. 107, 064102 (2015)
Camattari, R., Paternò, G., Romagnoni, M., Bellucci, V., Mazzolari, A., Guidi, V.: J. Appl. Cryst. 50, 145–151 (2017)
Cristiano, F., Shayesteh, M., Duffy, R., Huet, K., Mazzamuto, F., et al.: Mat. Sci. Semicond. Process. 42, 188–195 (2016)
Bogacz, S.A., Ketterson, J.B.: J. Appl. Phys. 60, 177–188 (1986)
Breese, M.B.H.: Nucl. Instrum. Method Phys. Res. B 132, 540–547 (1997)
Mikkelsen, U., Uggerhøj, E.: Nucl. Instum. Meth. B 160, 435 (2000)
Avakian, R.O., Avetyan, K.N., Ispirian, K.A., Melikyan, E.G.: Nucl. Instrum. Method Phys. Res. A 508, 496–499 (2003)
Tran Thi, T.N., Morse, J., Caliste, D., Fernandez, B., Eon, D., et al.: J. Appl. Cryst. 50, 561 (2017)
de la Mata, B.G., Sanz-Hervás, A., Dowsett, M.G., Schwitters, M., Twitchen, D.: Diam. Rel. Mat. 16, 809 (2007)
Korol, A.V., Solov’yov, A.V., Greiner, W.: Int. J. Mod. Phys. E 9, 77–105 (2000)
Krause, W., Korol, A.V., Solov’yov, A.V., Greiner, W.J.: Phys. G Nucl. Part. Phys. 26, L87–L95 (2000)
Hubbel, J.H., Seltzer, S.M.: Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest. NISTIR 5632. Web version http://www.nist.gov/pml/data/xraycoef/index.cfm
Nakamura, K., et al., (Particle Data Group): Review of particle physics. J. Phys. G: Nucl. Part. Phys. 37, 075021 (2010)
Korol, A.V., Solov’yov, A.V., Greiner, W.: Proc. SPIE 5974, 597405 (2005)
Kaplin, V.V., Plotnikov, S.V., Vorobev, S.A.: Sov. Phys. - Tech. Phys. 25, 650–651 (1980)
Baryshevsky, V.G., Dubovskaya, I.Ya., Grubich, A.O.: Phys. Lett. 77A, 61–64 (1980)
Ikezi, H., Lin-Liu, Y.R., Ohkawa, T.: Phys. Rev. B 30, 1567–1569 (1984)
Mkrtchyan, A.R., Gasparyan, R.H., Gabrielyan, R.G., Mkrtchyan, A.G.: Phys. Lett. 126A, 528–530 (1988)
Dedkov, G.V.: Phys. Stat. Sol. (b) 184, 535–542 (1994)
Wagner, W., Azadegan, B., Büttig, H., Grigoryan, LSh., Mkrtchyan, A.R., Pawelke, J.: Nuovo Cimento C 34, 157–165 (2011)
Tzianaki, E., Bakarezos, M., Tsibidis, G.B., Orphanos, Y., Loukakos, P.A., et al.: Opt. Express 23, 17191–17204 (2015)
Bakarezos, M., Tzianaki, E., Petrakis, S., Tsibidis, G., Loukakos, P.A., et al.: Ultrasonics 86, 14–19 (2018)
Mkrtchyan, A.R., Gasparyan, R.A., Gabrielyan, R.G.: Phys. Lett. 115A, 410–412 (1986)
Grigoryan, L.Sh., Mkrtchyan, A.R., Khachatryan, H.F., Wagner, W., Saharian, A.A., Baghdasaryan, K.S.: Nucl. Instrum. Method B 212, 51–55 (2003)
Wagner, W., Azadegan, B., Büttig, H., Pawelke, J., Sobiella, M., Grigoryan, L.Sh.: Probing channeling radiation influenced by ultrasound. In: Dabagov, S.B., Palumbo, L., Zichichi, A. (eds.) Charged and Neutral Particles Channeling Phenomena - Channeling 2008, pp. 378–407. World Scientific, Singapore (2010)
Wistisen, T.N., Di Piazza, A.: Phys. Rev. D 99, 116010 (2019)
Andersen, J.U., Andersen, S.K., Augustyniak, W.M.: K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 39, 1–58 (1977)
Kostyuk, A., Korol, A.V., Solov’yov, A.V., Greiner, W.: J. Phys. B 44, 075208 (2011)
Barrett, J.H.: Phys. Rev. B 3, 1527–1547 (1971)
Smulders, P.J.M., Boerma, D.O.: Nucl. Instum. Methods B 29, 471–489 (1987)
Artru, X.: Nucl. Instrum. Method Phys. Res. B 48, 278–282 (1990)
Biryukov, V.M.: Phys. Rev. E 51, 3522–3528 (1995)
Fomin, S.P., Jejcic, A., Kasilov, V.I., Lapin, N.I., Maillard, J., et al.: Nucl. Instum. Methods B 129, 29–34 (1997)
Shul’ga, N.F., Syshchenko, V.V.: Nucl. Instum. Methods B 227, 125–131 (2005)
Bogdanov, O.V., Fiks, E.I., Korotchenko, K.B., Pivovarov, Yu.L., Tukhfatullin, T.A.: J. Phys. Conf. Ser. 236, 012029 (2010)
Bagli, E., Guidi, V.: Nucl. Instrum. Meth. B 309, 124 (2013)
Bagli, E., Guidi, V., Maisheev, V.A.: Phys. Rev. E 81, 026708 (2010)
Bandiera, L., Bagli, E., Guidi, V., Tikhomirov, V.V.: Nucl. Instrum. Meth. B 355, 44 (2015)
Baier, V.N., Katkov, V.M., Strakhovenko, V.M.: Electromagnetic Processes at High Energies in Oriented Single Crystals. World Scientific, Singapore (1998)
Sytov, A.I., Tikhomirov, V.V., Bandiera, L.: Phys. Rev. Accel. Beams 22, 064601 (2019)
Sytov, A., Tikhomirov, V.: Nucl. Instrum. Methods B 355, 383 (2015)
Tikhomirov, V.V.: Phys. Rev. Accel. Beams 22, 054501 (2019)
Guidi, V., Bandiera, L., Tikhomirov, V.: Phys. Rev. A 86, 042903 (2012)
Korol, A.V., Solov’yov, A.V., Greiner, W.: J. Phys. G 27, 95–125 (2001)
Nielsen, C.F.: Comp. Phys. Comm. 252, 107128 (2020)
Doyle, P.A., Turner, P.S.: Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. A 24, 390–397 (1968)
Kostyuk, A.: Eur. Phys. J. D 67, 108 (2013)
Bezchastnov, V.G., Korol, A.V., Solov’yov, A.V.: J. Phys. B 51, 168002 (2018)
Sushko, G.B., Bezchastnov, V.G., Solov’yov, I.A., Korol, A.V., Greiner, W., Solov’yov, A.V.: Simulation of ultra-relativistic electrons and positrons channeling in crystals with MBN Explorer. J. Comp. Phys. 252, 404 (2013)
Solov’yov, I.A., Yakubovich, A.V., Nikolaev, P.V., Volkovets, I., Solov’yov, A.V.: MesoBioNano explorer - a universal program for multiscale computer simulations of complex molecular structure and dynamics. J. Comp. Chem. 33, 2412–2439 (2012)
Sushko, G.B., Korol, A.V., Solov’yov, A.V.: Nucl. Instrum. Methods B 355, 39 (2015)
Korol, A.V., Bezchastnov, V.G., Sushko, G.B., Solov’yov, A.V.: Nucl. Instrum. Meth. B 387, 41–53 (2016)
Korol, A.V., Bezchastnov, V.G., Solov’yov, A.V.: Eur. Phys. J. D 71, 174 (2017)
Shen, H., Zhao, Q., Zhang, F.S., Sushko, G.B., Korol, A.V., Solov’yov, A.V.: Nucl. Instrum. Meth. B 424, 26 (2018)
Pavlov, A.V., Korol, A.V., Ivanov, V.K., Solov’yov, A.V.: J. Phys. B: At. Mol. Opt. Phys. 52, 11LT01 (2019)
Sushko, G.B., Bezchastnov, V.G., Korol, A.V., Greiner, W., Solov’yov, A.V., Polozkov, R.G., Ivanov, V.K.: J. Phys.: Conf. Ser. 438, 012019 (2013)
Sushko, G.B., Korol, A.V., Greiner, W., Solov’yov, A.V.: Sub-GeV electron and positron channeling. J. Phys.: Conf. Ser. 438, 012018 (2013)
Sushko, G.B., Korol, A.V., Solov’yov, A.V.: St. Petersburg Polytechnical Uni. J.: Phys. Math. 1, 332 (2015)
Sushko, G.B.: Atomistic Molecular Dynamics Approach for Channeling of Charged Particles in Oriented Crystals (Doctoral dissertation), Goethe-Universität, Frankfurt am Main (2015)
Pavlov, A.V., Korol, A.V., Ivanov, V.K., Solov’yov, A.V.: Eur. Phys. J. D 74, 21 (2020)
Haurylavets, V.V., Leukovich, A., Sytov, A., Mazzolari, A., Bandiera, L., Korol, A.V., Sushko, G.B., Solovyov, A.V.: MBN Explorer atomistic simulations of electron propagation and radiation of 855 MeV electrons in oriented silicon bent crystal: theory versus experiment. Europ. Phys. J. Plus. 137, 34 (2022). arXiv preprint arXiv:2005.04138
Korol, A.V., Sushko, G.B., Solov’yov, A.V.: Eur. Phys. J. D 75, 107 (2021)
Molière, G.: Z. f. Naturforsch. A 2, 133–145 (1947)
Pacios, L.F.: J. Comp. Chem. 14, 410–421 (1993)
Sushko, G.B., Solov’yov, I.A., Solov’yov, A.V.: Europ. Phys. J. D 70, 217 (2016)
Rossi, B., Greisen, K.: Rev. Mod. Phys. 13, 241 (1941). Prentice-Hall, Inc., New York
Beloshitsky, V.V., Kumakhov, M.A., Muralev, V.A.: Radiat. Eff. 20, 95 (1973)
Backe, H., Kunz, P., Lauth, W., Rueda, A.: Nucl. Instrum. Method B 266, 3835–3851 (2008)
Bogdanov, O.V., Dabagov, S.N.: J. Phys.: Conf. Ser. 357, 012029 (2012)
Backe, H., Lauth, W.: Nucl. Instrum. Meth. B 355, 24–29 (2015)
Jackson, J.D.: Classical Electrodynamics. Wiley, Hoboken (1999)
Tsai, Y.-S.: Rev. Mod. Phys. 46, 815 (1974)
Bak, J., Ellison, J.A., Marsh, B., Meyer, F.E., Pedersen, O., et al.: Nucl. Phys. B. 254, 491–527 (1985)
Tikhomirov, V.V.: A benchmark construction of positron crystal undulator. arXiv preprint arXiv:1502.06588 (2015)
Chouffani, K., Überall, H.: Phys. Status Sol. (b) 213, 107–151 (1999)
Uggerhøj, E.: Rad. Eff. Def. Solids 25, 3–21 (1993)
Schmüser, P., Dohlus, M., Rossbach, J.: Ultraviolet and Soft X-Ray Free-Electron Lasers. Springer, Berlin/Heidelberg (2008)
Rullhusen, P., Artru, X., Dhez, P.: Novel Radiation Sources Using Relativistic Electrons. World Scientific, Singapore (1998)
Altarelli, M., Salam, A.: Europhysicsnews 35, 47–50 (2004)
Kim, K.-J.: Characteristics of synchrotron radiation. In: X-ray Data Booklet, pp. 2.1–2.16. Lawrence Berkeley Laboratory, Berkley (2009). http://xdb.lbl.gov/xdb-new.pdf
Kim, K.-J.: Nucl. Instrum. Meth. A 246, 71–76 (1986)
Ginzburg, V.L.: Theoretical Physics and Astrophysics. International Series in Natural Philosophy, vol. 99. Pergamon Press, Oxford (1979)
Schott, G.A.: Electromagnetic Radiation. Cambridge University Press, Cambridge (1912)
Ivanenko, D.D., Pomeranchuk, I.Ya.: On the maximum energy achievable in a betatron. Doklady Acad. Nauk 44, 343 (1944) (in Russian)
Schwinger, J.: Phys. Rev. 75, 1912 (1949)
Elder, F.R., Gurewitsch, A.M., Langmuir, R.V., Pollock, H.C.: Phys. Rev. 71, 829 (1947)
Tavares, P.F., Leemann, S.C., Sjöström, M., Andersson, Å.J.: Synchrotron Rad. 21, 862 (2014)
Ginzburg, V.L.: Radiation of microwaves and their absorption in air. Bull. Acad. Sci. USSR, Ser. Phys. 11, 165 (1947) (in Russian)
Motz, H.: J. Appl. Phys. 22, 527–534 (1951)
Motz, H., Thon, W., Whitehurst, R.N.: J. Appl. Phys. 24, 826–833 (1953)
Madey, J.M.J.: J. Appl. Phys. 42, 1906–1913 (1971)
Deacon, D.A.G., Elias, L.R., Madey, J.M.J., Ramian, G.J., Schwettman, H.A., Smith, T.I.: Phys. Rev. Lett. 38, 892 (1977)
Kondratenko, A.M., Saldin, E.L.: Part. Accel. 10, 207 (1980)
Bonifacio, R., Pellegrini, C., Narducci, L.M.: Opt. Commun. 50, 373–378 (1984)
Kim, K.J.: Phys. Rev. Lett. 57, 1871 (1986)
Bonifacio, R., Casagrande, F., Cerchioni, G., de Salvo Souza, L., Pierini, P., Piovella, N.: Rivista del Nuovo Cimento 13, 1–69 (1990)
Luchini, P., Motz, H.: Undulators and Free-Electron Lasers. Oxford University Press, New York (1990)
Saldin, E.L., Schneidmiller, E.A., Yurkov, M.V.: The Physics of Free-Electron Lasers. Springer, Berlin/Heidelberg (1999)
Huang, Zh., Kim. K-J.: Phys. Rev. ST Accel. Beams 10, 034801 (2007)
Pellegrini, C., Marinelli, A., Reiche, S.: Rev. Mod. Phys. 88, 015006 (2016)
Gover, A., Friedman, A., Emma, C., Sudar, N., Musumeci, P., Pellegrini, C.: Rev. Mod. Phys. 91, 035003 (2019)
Federici, L., Giordano, G., Matone, G., Pasquariello, G., Picozza, P., et al.: Lett. Nuovo Cimento 27, 339 (1980)
Federici, L., Giordano, G., Matone, G., Pasquariello, G., Picozza, P.G., et al.: Nuovo Cimento 59B, 247 (1980)
ur Rehman, H., Lee, J., Kim, Y.: Ann. Nucl. Energy 105, 150 (2017)
Krämer, J.M., Jochmann, A., Budde, M., Bussmann, M., Couperus, J.P., et al.: Sci. Reports 8, 139 (2018)
ur Rehman, H., Lee, J., Kim, Y.: Int. J. Energy Res. 42, 236–244 (2018)
Kulikov, O.F., Telnov, Y.Y., Filippov, E.I., Yakimenko, M.N.: Phys. Lett. 13, 344 (1964)
Bemporad, C., Milburn, R.H., Tanaka, N., Fotino, M.: Phys. Rev. 138, B1546 (1965)
Ballam, J., Chadwick, G.B., Gearhart, R., Guiragossian, Z.G.T., Klein, P.R., et al.: Phys. Rev. Lett. 23, 498 (1969) (Erratum: Phys. Rev. Lett. 23, 817 (1969))
D’Angelo, A., Bartalini, O., Bellini, V., Levi Sandri, P., Moricciani, D., Nicoletti, L., Zucchiatti, A.: Nucl. Instrum. Meth. A 455, 1 (2000)
Schaerf, C.: Phys. Today 58, 44 (2005)
Weller, H.R., Ahmed, M.W., Gao, H., Tornow, W., Wu, Y.K., Gai, M., Miskimen, R.: Prog. Part. Nucl. Phys. 62, 257 (2009)
Krafft, G.A., Priebe, G.: Rev. Accelerator Scie. Technol. 3, 147 (2010)
Sei, N., Ogawa, H., Jia, Q.K.: Appl. Sci. 10, 1418 (2020)
Howell, C.R., Ahmed, M.W., Afanasev, A., Alesini, D., Annand, J.R.M., et al.: International Workshop on Next Generation Gamma-Ray Source. arXiv preprint arXiv:2012.10843 (2020)
Wu, Y.K., Vinokurov, N.A., Mikhailov, S., Li, J., Popov, V.: Phys. Rev. Lett. 96, 224801 (2006)
Krasny, M.W.: The Gamma Factory proposal for CERN. Photon-2017 Conference, May 22–29, 2017 8CERN, Geneva. https://indico.cern.ch/event/604619/contributions/2474166/attachments/ 1463495/2261413/Witold_Krasny_Photon_2017.pdf
Schaumann, M., Alemany-Fernández, R., Bartosik, H., Bohl, Th., Bruce, R. et al: First partially stripped ions in the LHC (\(^{208}\)Pb\(^{81+}\)). In: Proceedings, 10th International Particle Accelerator Conference (IPAC2019), page MOPRB055 (Melbourne, Australia, May 19–24, 2019)
Tajima, T., Dawson, J.: Phys. Rev. Lett. 43, 267 (1979)
Pukhov, A., Meyer-ter-Vehn, J.: Appl. Phys. B 74, 355 (2002)
Esarey, E., Schroeder, C.B., Leemans, W.P.: Rev. Mod. Phys. 81, 1229 (2009)
Zhu, X.-L., Chen, M., Weng, S.-M., Yu, T.-P., Wang, W.-M., He, F., et al.: Sci. Adv. 6, eaaz7240 (2020)
Kumakhov, M.A., Komarov, F.F.: Radiation from Charged Particles in Solids AIP. New York (1989)
Barbini, R., Ciocci, F., Datolli, G., Gianessi, L.: Rivista del Nuovo Cimento 13, 1–65 (1990)
Alferov, D.F., Bashmakov, Yu.A., Cherenkov, P.A.: Sov. Phys. - Uspekhi 32, 200–227 (1989)
Schneider-Muntau, H.J., Toth, J., Weijers, H.W.: IEEE Trans. Appl. Supercond. 14, 1245–1252 (2004)
The European X-ray Laser Project XFEL. http://www.xfel.eu/
Backe, H., Lauth, W., Kunz, P., Rueda, A., Esberg, J., Kirsebom, K., Hansen, J.L., Uggerhøj, U.K.I.: Photon Emission of Electrons in a Crystalline Undulator. In: Dabagov, S.B., Palumbo, L., Zichichi, A. (eds.) Proceedings of the 51st Workshop Charged and Neutral Particles Channeling Phenomena Channeling 2008, Erice, Italy, Oct. 2008, pp. 281–290. World Scientific, Singapore/Hackensack (2010)
Mao, F., Sushko, G.B., Korol, A.V., Solov’yov, A.V., Cheng, W., Sang, H., Zhang, F.-S.: Radiation by ultra-relativistic positrons and electrons channeling in periodically bent diamond crystals. Unpublished (2015)
Backe, H., Lauth, W.: Channeling experiments with electrons at the mainz microtron. In: 4th International Conference on “Dynamics of Systems on the Nanoscale” (Bad Ems, Germany, Oct. 3–7 2016) Book of Abstracts, p. 58 (2016)
Taratin, A.M., Vorobiev, S.A.: Phys. Lett. 119, 425 (1987)
Taratin, A.M., Vorobiev, S.A.: Nucl. Instrum. Meth. B 26, 512 (1987)
Shul’ga, N.F., Boyko, V.V., Esaulov, A.S.: Phys. Lett. A 372, 2065–2068 (2008)
Nielsen, C.F., Uggerhøj, U.I., Holtzapple, R., Markiewicz, T.W., Benson, B.C., Bagli, E., Bandiera, L., Guidi, V., Mazzolari, A., Wienands, U.: Phys. Rev. Acc. Beams 22, 114701 (2019)
Backe, H., Lauth, W., Tran Thi, T.N.: J. Instrum. (JINST) 13, C04022 (2018)
Boshoff, D., Copeland, M., Haffejee, F., Kilbourn, Q., Mercer, C., Osatov, A., Williamson, C., et al.: The search for diamond crystal undulator radiation. In: 4th International Conference on “Dynamics of Systems on the Nanoscale” (Bad Ems, Germany, Oct. 3–7 2016) Book of Abstracts, p. 38 (2016)
Pavlov, A., Korol, A., Ivanov, V., Solov’yov, A.: St. Petersburg Polytechnical Uni. J.: Phys. Math. 14, 190 (2021). (arXiv.org: arXiv:2004.07043)
Backe, H., Krambrich, D., Lauth, W., Andersen, K.K., Hansen, J.L., Uggerhøj, U.I.: J. Phys. Conf. Ser. 438, 012017 (2013)
The DA\(\Phi \)NE Beam-Test Facility. http://www.lnf.infn.it/acceleratori/btf/
Medvedev, M.V.: Astrophys. J. 540, 704–714 (2000)
Kellner, S.R., Aharonian, F.A., Khangulyan, D.: Astrophys. J. 774, 61 (2013)
Banks, M.: Italy cancels €1bn SuperB collider. Physics World (2012). https://physicsworld.com/a/italy-cancels-1bn-superb-collider/
Pavlov, A.V., Korol, A.V., Ivanov, V.K., Solov’yov, A.V.: Unpublished (2020)
Kostyuk, A., Korol, A.V., Solov’yov, A.V., Greiner, W.J.: Phys. B At. Mol. Opt. Phys. 43, 151001 (2010)
Abramowitz, M., Stegun, I.E.: Handbook of Mathematical Functions. Dover, New York (1964)
Kostyuk, A., Korol, A.V., Solov’yov, A.V., Greiner, W.: Nucl. Instrum. Method B 269, 1482–1492 (2011)
Ledingham, K.W.D., McKenna, P., Singhal, R.P.: Science 300, 1107 (2003)
Hajima, R., Hakayama, T., Kikuzawa, N., Minehara, E.: J. Nucl. Sci. Technol. 45, 441–451 (2008)
Ledingham, K.W.D., Singhal, R.P., McKenna, P., Spencer, I.: Europhys. News 33, 120 (2002)
Weon, B.M., Je, J.H., Hwu, Y., Margaritondo, G.: Phys. Rev. Lett. 100, 217403 (2008)
Solov’yov, A.V. (ed.): Nanoscale Insights into Ion-Beam Cancer Therapy. Springer, Cham, Switzerland (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Korol, A.V., Solov’yov, A.V. (2022). Novel Light Sources Beyond FELs. In: Solov'yov, I.A., Verkhovtsev, A.V., Korol, A.V., Solov'yov, A.V. (eds) Dynamics of Systems on the Nanoscale. Lecture Notes in Nanoscale Science and Technology, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-030-99291-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-99291-0_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-99290-3
Online ISBN: 978-3-030-99291-0
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)