Skip to main content

Novel Light Sources Beyond FELs

  • Chapter
  • First Online:
Dynamics of Systems on the Nanoscale

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 34))

  • 676 Accesses

Abstract

The chapter is devoted to the discussion of possibilities to construct novel powerful light sources (LSs) operating in the sub-angstrom wavelength range (the corresponding energies of radiation from hundreds of keV up to tens GeV region) which is far beyond the limits achievable in modern facilities (synchrotrons, undulators, and free-electron lasers, XFEL). The novel LSs (synchrotron-like, undulator-like) are based on the channeling phenomenon for ultra-relativistic particles in oriented crystals (linear, bent, and periodically bent). These LSs can emit intensive radiation in gamma-ray region. Additionally, the crystal undulator LS has a potential to generate coherent laser-type radiation with wavelengths orders of magnitudes less than 1 Angstrom. Such LSs will have many applications in the basic sciences and the life sciences. Illustrative theoretical and computational results obtained as well as the overview of the relevant experimental activities and achievements are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The list of earlier codes developed to simulate the channeling phenomenon includes, in particular, Refs. [119,120,121,122,123,124].

  2. 2.

    In literature, one can find another term for this type of radiation,—magnetic bremsstrahlung. This term is more frequently used in application to the astrophysical problems, see Ref. [173].

  3. 3.

    Operational principle of a magnetic undulator was proposed by Ginzburg [179] and verified experimentally by Motz and co-workers [180, 181].

  4. 4.

    Fore the sake of comparison we also match our data to the brilliance available at the XFEL facilities for much lower energy of the emitted radiation.

  5. 5.

    To be specific, we assume the emission in the forward direction. This is why the longitudinal coordinate, i.e., the one along the undulator axis, plays the key role.

References

  1. Emma, P., Akre, R., Arthur, J., Bionta, R., Bostedt, C., et al.: Nat. Photonics 4, 641 (2010)

    Article  ADS  Google Scholar 

  2. Bostedt, Ch., Boutet, S., Fritz, D.M., Huang, Z., Lee, H.J., et al.: Rev. Mod. Phys. 88, 015007 (2016)

    Article  ADS  Google Scholar 

  3. Materlik, G., Tschentscher, Th. (eds.): TESLA technical design report. Part V. The X-ray free electron laser. http://tesla.desy.de/new_pages/TDR_CD/PartV/fel.html (2001)

  4. http://flash.desy.de/

  5. LCLS web site: https://slacportal.slac.stanford.edu/sites/lcls_public/Pages/Default.aspx

  6. McNeil, B.W.J., Thompson, N.R.: Nat. Photonics 4, 814 (2010)

    Article  ADS  Google Scholar 

  7. Di Mitri, S., Allaria, E.M., Cinquegrana, P., Craievich, P., Danailov, M., et al.: Proc. SPIE 8078, 807802 (2011)

    Article  Google Scholar 

  8. Couprie, M.E.: J. Electr. Spectrosc. Rel. Phenomena 196, 3 (2014)

    Google Scholar 

  9. Schreiber, S., Faatz, F.: High Power Laser Science and Engineering, vol. 3, p. e20 (2015)

    Google Scholar 

  10. Jaeschke, E.J., Khan, Sh., Schneider, J.R., Hastings, J.B. (eds.): Synchrotron Light Sources and Free-Electron Lasers. Springer, Switzerland (2016)

    Google Scholar 

  11. Seddon, E.A., Clarke, J.A., Dunning, D.J., Masciovecchio, C., Milne, C.J., et al.: Rep. Prog. Phys. 80, 115901 (2017)

    Article  ADS  Google Scholar 

  12. Milne, Ch.J., Schietinger, Th., Aiba, M., Alarcon, A., Alex, J., et al.: Appl. Sci. 7, 720 (2017)

    Article  Google Scholar 

  13. Doerr, A.: Nature Meth. 13, 33 (2018)

    Article  Google Scholar 

  14. SACLA web site: http://xfel.riken.jp/eng/index.html, http://xfel.riken.jp/eng/pdf/XFELeng.pdf

  15. Ayvazyan, V., Baboi, N., Bohnet, I., Brinkmann, R., Castellano, M., et al.: Europ. Phys. J. D 20, 149 (2002)

    Article  ADS  Google Scholar 

  16. Yabashi, M., Tanaka, H.: Nat. Photonics 11, 12 (2017)

    Article  ADS  Google Scholar 

  17. Xenon beams light path to gamma factory. CERN Courier (13 Oct. 2017). https://cerncourier.com/xenon-beams-light-path-to-gamma-factory/

  18. Krasny, M.W.: The Gamma Factory proposal for CERN. arXiv preprint arXiv:1511.07794 (2015)

  19. Krasny, M.W., Martens, A., Dutheil, Y.: Gamma factory proof-of-principle experiment: letter of intent. CERN-SPSC-2019-031/SPSC-I-253, 25/09/2019. http://cds.cern.ch/record/2690736/files/SPSC-I-253.pdf

  20. Olive, K.A., et al. (Particle Data Group).: Review of particle physics. Chin. Phys. C 38, 090001 (2014)

    Google Scholar 

  21. Korol, A.V., Solov’yov, A.V.: Crystal-based intensive gamma-ray light sources. Europ. Phys. J. D 74, 201 (2020)

    Article  ADS  Google Scholar 

  22. Korol, A.V., Solov’yov, A.V., Greiner, W.: J. Phys. G Nucl. Part. Phys. 24, L45–L53 (1998)

    Article  ADS  Google Scholar 

  23. Korol, A.V., Solov’yov, A.V., Greiner, W.: Int. J. Mod. Phys. E 13, 867–916 (2004)

    Article  ADS  Google Scholar 

  24. Korol, A.V., Solov’yov, A.V., Greiner, W.: Int. J. Mod. Phys. E 8, 49–100 (1999)

    Article  ADS  Google Scholar 

  25. Greiner, W., Korol, A.V., Kostyuk, A., Solov’yov, A.V.: Vorrichtung und Verfahren zur Erzeugung electromagnetischer Strahlung. Application for German Patent, June 14, Ref.: 10 2010 023 632.2 (2010)

    Google Scholar 

  26. Korol, A.V., Solov’yov, A.V., Greiner, W.: Channeling and Radiation in Periodically Bent Crystals, 2nd edn. Springer, Berlin, Heidelberg (2014)

    Book  Google Scholar 

  27. Sushko, G.B., Korol, A.V., Solov’yov, A.V.: St. Petersburg Polytechnical Uni. J.: Phys. Math. 1, 341 (2015)

    Google Scholar 

  28. Lindhard, J.: K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 34, 1–64 (1965)

    Google Scholar 

  29. Gemmell, D.S.: Rev. Mod. Phys. 46, 129–227 (1974)

    Article  ADS  Google Scholar 

  30. Biryukov, V.M., Chesnokov, Yu.A., Kotov, V.I.: Crystal Channeling and Its Application at High-Energy Accelerators. Springer, Berlin/Heidelberg (1996)

    Google Scholar 

  31. Andersen, H.H., Rehn, L.E. (eds.): Channeling and other crystal effects at relativistic energy. Nucl. Instrum. Methods B 119 (Topical Issue), 1–315 (1996)

    Google Scholar 

  32. Bandiera, L., Bagli, E., Germogli, G., Guidi, V., Mazzolari, A., Backe, H., Lauth, W., et al.: Phys. Rev. Lett. 115, 025504 (2015)

    Google Scholar 

  33. Solov’yov, I.A., Korol, A.V., Solov’yov, A.V.: Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer. Springer, Cham, Switzerland (2017)

    Google Scholar 

  34. Uggerhøj, U.I.: Rev. Mod. Phys. 77, 1131–1171 (2005)

    Article  ADS  Google Scholar 

  35. Kumakhov, M.A.: Phys. Lett. 57A, 17–18 (1976)

    Article  Google Scholar 

  36. Terhune, R.W., Pantell, R.H.: Appl. Phys. Lett. 30, 265 (1977)

    Article  ADS  Google Scholar 

  37. Brau, C.A., Choi, B.-K., Jarvis, J.D., Lewellen, J.W., Piot, P.: Synchrotron Radiat. News 25, 20 (2012)

    Article  Google Scholar 

  38. Wagner, W., Azadegan, B., Sobiella, M., Steiner, J., Zeil, K., Pawelke, J.: Nucl. Instrum. Meth. B 266, 327 (2008)

    Article  ADS  Google Scholar 

  39. SLAC Site Office: Preliminary Conceptual Design Report for the FACET-II Project at SLAC National Accelerator Laboratory. Report SLAC-R-1067, SLAC (2015)

    Google Scholar 

  40. Tanabashi, M., et al., (Particle Data Group): Review of particle physics. Phys. Rev. D 98, 030001 (2018)

    Google Scholar 

  41. Akai, K., Furukawa, K., Koiso, K.: SuperKEKB Collider. Preprint at arXiv:1809.01958 (2018)

  42. The CEPC Study Group. CEPC Conceptual Design Report. Preprint at arXiv:1809.00285 (2018)

  43. Tsyganov, E.N.: Some aspects of the mechanism of a charge particle penetration through a monocrystal. Fermilab Preprint TM-682. Fermilab, Batavia (1976); Estimates of cooling and bending processes for charged particle penetration through a monocrystal. Fermilab Preprint TM-684. Fermilab, Batavia (1976)

    Google Scholar 

  44. Elishev, A.F., Filatova, N.A., Golovatyuk, V.M., Ivanchenko, I.M., Kadyrov, R.B., et al.: Phys. Lett. B 88, 387 (1979)

    Article  ADS  Google Scholar 

  45. Scandale, W., Fiorini, M., Guidi, V., Mazzolari, A., Vincenzi, D., et al.: Phys. Lett. B 719, 70 (2013)

    Article  ADS  Google Scholar 

  46. Scandale, W., Carnera, A., Mea, G.D., De Salvador, D., Milan, R., et al.: Phys. Rev. ST AB 11, 063501 (2008)

    ADS  Google Scholar 

  47. Scandale, W., Vomiero, A., Baricordi, S., et al.: Phys. Rev. Lett. 101, 164801 (2008)

    Article  ADS  Google Scholar 

  48. Scandale, W., Vomiero, A., Baricordi, S., Dalpiaz, P., Fiorini, M., et al.: Phys. Rev. A 79, 012903 (2009)

    Article  ADS  Google Scholar 

  49. Scandale, W., Vomiero, A., Bagli, E., et al.: Phys. Lett. B 681, 233–236 (2009)

    Article  ADS  Google Scholar 

  50. Scandale, W., Vomiero, A., Bagli, E., et al.: Phys. Lett. B 693, 545–550 (2010)

    Article  ADS  Google Scholar 

  51. Scandale, W., Arduini, G., Assmann, R., et al.: Phys. Lett. B 692, 78–82 (2010)

    Article  ADS  Google Scholar 

  52. Scandale, W., Vomiero, A., Bagli, E., et al.: Europhys. Lett. 93, 56002 (2011)

    Article  ADS  Google Scholar 

  53. Fliller, R.P., III., Drees, A., Gassner, D., Hammons, L., McIntyre, G., et al.: Phys. Rev. ST AB 9, 013501 (2006)

    ADS  Google Scholar 

  54. Wienands, U., Markiewicz, T.W., Nelson, J., Noble, R.J., Turner, J.L., et al.: SLAC Scientific Publications (2014) SLAC-PUB-15952

    Google Scholar 

  55. Wistisen, T.N., Uggerhøj, U.I., Wienands, U., Markiewicz, T.W., Noble, R.J., et al.: Phys. Rev. Acc. Beams 19, 071001 (2016)

    Article  ADS  Google Scholar 

  56. Sytov, A.I., Bandiera, L., De Salvador, D., Mazzolari, A., Bagli, E., et al.: Eur. Phys. J. C 77, 901 (2017)

    Article  ADS  Google Scholar 

  57. Wienands, U., Markiewicz, T.W., Nelson, J., Noble, R.J., Turner, J.L., et al.: Phys. Rev. Lett. 114, 074801 (2015)

    Article  ADS  Google Scholar 

  58. Wienands, U., Gessner, S., Hogan, M.J., Markiewicz, T., Smith, T., Sheppard, J., et al.: Int. J. Mod. Phys. A 34, 1943006 (2019)

    Google Scholar 

  59. Wienands, U., Gessner, S., Hogan, M.J., Markiewicz, T.W., Smith, T., et al.: Nucl. Instrum Meth. B 402, 11 (2017)

    Google Scholar 

  60. Bandiera, L., Kyryllin, I.V., Brizzolari, C., Camattari, R., Charitonidis, N., De Salvador, D., et al.: Europ. Phys. J. C 81(3), 1–10 (2021)

    Google Scholar 

  61. Taratin, A.M., Vorobiev, S.A.: Nucl. Instrum. Meth. B 31, 551–557 (1988)

    Article  ADS  Google Scholar 

  62. Taratin, A.M., Vorobiev, S.A.: Nucl. Instrum. Meth. B 42, 41–45 (1989)

    Article  ADS  Google Scholar 

  63. Bandiera, L., Sytov, A., De Salvador, D., Mazzolari, A., Bagli, E., Camattari, R., et al.: Europ. Phys. J. C 81(3), 1–9 (2021)

    Google Scholar 

  64. Polozkov, R.G., Ivanov, V.K., Sushko, G.B., Korol, A.V., Solov’yov, A.V.: Eur. Phys. J. D 68, 268 (2014)

    Article  ADS  Google Scholar 

  65. Mazzolari, A., Bagli, E., Bandiera, L., Guidi, V., Backe, H., Lauth, W., et al.: Phys. Rev. Lett. 112, 135503 (2014)

    Article  ADS  Google Scholar 

  66. Shen, H., Zha, Q., Zhang, F.S., Sushko, G.B., Korol, A.V., Solov’yov, A.V.: Nucl. Instrum. Meth. B 424, 26 (2018)

    Google Scholar 

  67. Kostyuk, A.: Phys. Rev. Lett. 110, 115503 (2013)

    Article  ADS  Google Scholar 

  68. Wistisen, T.N., Andersen, K.K., Yilmaz, S., Mikkelsen, R., Hansen, J.L., Uggerhøj, U.I., Lauth, W., Backe, H.: Phys. Rev. Lett. 112, 254801 (2014)

    Article  ADS  Google Scholar 

  69. Uggerhoj, U.I., Wistisen, T.N., Hansen, J.L., Lauth, W., Klag, P.: Eur. J. Phys. D 71, 124 (2017)

    Article  ADS  Google Scholar 

  70. Korol, A.V., Bezchastnov, V.G., Sushko, G.B., Solov’yov, A.V.: Nucl. Instrum. Meth. B 387, 41 (2016)

    Article  ADS  Google Scholar 

  71. Uggerhøj, U.I., Wistisen, T.N.: Nucl. Instrum Meth. B 355, 35 (2015)

    Article  ADS  Google Scholar 

  72. Bezchastnov, V.G., Korol, A.V., Solov’yov, A.V.: J. Phys. B 47, 195401 (2014)

    Google Scholar 

  73. Baranov, V.T., Bellucci, S., Biryukov, V.M., et al.: JETP Lett. 82, 562–564 (2005)

    Article  ADS  Google Scholar 

  74. Baranov, V.T., Bellucci, S., Biryukov, V.M., Britvich, G.I., Chepegin, V.N., et al.: Nucl. Instrum. Meth. B 252, 32 (2006)

    Article  ADS  Google Scholar 

  75. Backe, H., Krambrich, D., Lauth, W., Buonomo, B., Dabagov, S.B., et al.: Nuovo Cimento C 34, 175 (2011)

    Google Scholar 

  76. Quintieri, L., Buonomo, B., Dabagov, S.B., Mazzitelli, G., Valente, P., Backe, H., Valente, P., Backe, H., Kunz, P., Lauth, W.: Positron channeling at the DA\(\Phi \)NE BTF facility: the CUP experiment. In: Dabagov, S.B., Palumbo, L., Zichichi, A. (eds.) Proceedings of the 51st Workshop Charged and Neutral Particles Channeling Phenomena Channeling 2008, Erice, Italy, Oct 2008, pp. 319–330. World Scientific, Singapore/Hackensack (2010). ISBN 9789814307017

    Google Scholar 

  77. Bellucci, S., Bini, S., Biryukov, V.M., Chesnokov, Yu.A., et al.: Phys. Rev. Lett. 90, 034801 (2003)

    Article  ADS  Google Scholar 

  78. Afonin, A.G., Baranov, V.T., Bellucci, S., Biryukov, V.M., Britvich, G.I., et al.: Nucl. Instrum. Methods Phys. Res. B 234, 122–127 (2005)

    Article  ADS  Google Scholar 

  79. Tabrizi, M., Korol, A.V., Solov’yov, A.V., Greiner, W.: Phys. Rev. Lett. 98, 164801 (2007)

    Article  ADS  Google Scholar 

  80. Tabrizi, M., Korol, A.V., Solov’yov, A.V., Greiner, W.: J. Phys. G: Nucl. Part. Phys. 34, 1581–1593 (2007)

    Article  ADS  Google Scholar 

  81. Backe, H., Krambrich, D., Lauth, W., Hansen, J.L., Uggerhøj, U.I.: Nuovo Cimento C 34, 157–165 (2011)

    Google Scholar 

  82. Backe, H., Krambrich, D., Lauth, W., Andersen, K.K., Hansen, J.L., Uggerhøj, U.I.: Nucl. Instum. Meth. B 309, 37 (2013)

    Google Scholar 

  83. Bagli, E., Bandiera, L., Bellucci, V., Berra, A., Camattari, R., et al.: Eur. Phys. J. C 74, 3114 (2014)

    Article  Google Scholar 

  84. Kostyuk, A., Korol, A.V., Solov’yov, A.V., Greiner, W.: Nucl. Instrum. Method B 266, 972–987 (2008)

    Article  ADS  Google Scholar 

  85. Balling, P., Esberg, J., Kirsebom, K., Le, D.Q.S., Uggerhøj, U.I., Connell, S.H., Härtwig, J., Masiello, F., Rommeveaux, A.: Nucl. Instrum Meth. B 267, 2952 (2009)

    Article  ADS  Google Scholar 

  86. Guidi, V., Antonioni, A., Baricordi, S., Logallo, F., Malagù, C., et al.: Nucl. Instrum. Meth. B 234, 40–46 (2005)

    Article  ADS  Google Scholar 

  87. Lanzoni, L., Mazzolari, A., Guidi, V., Tralli, A., Martinelli, G.: Int. J. Eng. Sci. 46, 917–928 (2008)

    Article  Google Scholar 

  88. Lanzoni, L., Radi, E.: Int. J. Eng. Sci. 46, 1402–1412 (2009)

    Google Scholar 

  89. Guidi, V., Mazzolari, A., Martinelli, G., Tralli, A.: Appl. Phys. Lett. 90, 114107 (2007)

    Article  ADS  Google Scholar 

  90. Guidi, V., Lanzoni, L., Mazzolari, A.: Thin Solid Films 520, 1074 (2011)

    Article  ADS  Google Scholar 

  91. Bellucci, V., Camattari, R., Guidi, V., Mazzolari, A., Paterno, G., Mattei, G., Scian, C., Lanzoni, L.: Appl. Phys. Lett. 107, 064102 (2015)

    Google Scholar 

  92. Camattari, R., Paternò, G., Romagnoni, M., Bellucci, V., Mazzolari, A., Guidi, V.: J. Appl. Cryst. 50, 145–151 (2017)

    Article  Google Scholar 

  93. Cristiano, F., Shayesteh, M., Duffy, R., Huet, K., Mazzamuto, F., et al.: Mat. Sci. Semicond. Process. 42, 188–195 (2016)

    Article  Google Scholar 

  94. Bogacz, S.A., Ketterson, J.B.: J. Appl. Phys. 60, 177–188 (1986)

    Article  ADS  Google Scholar 

  95. Breese, M.B.H.: Nucl. Instrum. Method Phys. Res. B 132, 540–547 (1997)

    Article  ADS  Google Scholar 

  96. Mikkelsen, U., Uggerhøj, E.: Nucl. Instum. Meth. B 160, 435 (2000)

    Article  ADS  Google Scholar 

  97. Avakian, R.O., Avetyan, K.N., Ispirian, K.A., Melikyan, E.G.: Nucl. Instrum. Method Phys. Res. A 508, 496–499 (2003)

    Article  ADS  Google Scholar 

  98. Tran Thi, T.N., Morse, J., Caliste, D., Fernandez, B., Eon, D., et al.: J. Appl. Cryst. 50, 561 (2017)

    Google Scholar 

  99. de la Mata, B.G., Sanz-Hervás, A., Dowsett, M.G., Schwitters, M., Twitchen, D.: Diam. Rel. Mat. 16, 809 (2007)

    Article  Google Scholar 

  100. Korol, A.V., Solov’yov, A.V., Greiner, W.: Int. J. Mod. Phys. E 9, 77–105 (2000)

    Article  ADS  Google Scholar 

  101. Krause, W., Korol, A.V., Solov’yov, A.V., Greiner, W.J.: Phys. G Nucl. Part. Phys. 26, L87–L95 (2000)

    Article  ADS  Google Scholar 

  102. Hubbel, J.H., Seltzer, S.M.: Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest. NISTIR 5632. Web version http://www.nist.gov/pml/data/xraycoef/index.cfm

  103. Nakamura, K., et al., (Particle Data Group): Review of particle physics. J. Phys. G: Nucl. Part. Phys. 37, 075021 (2010)

    Google Scholar 

  104. Korol, A.V., Solov’yov, A.V., Greiner, W.: Proc. SPIE 5974, 597405 (2005)

    Article  Google Scholar 

  105. Kaplin, V.V., Plotnikov, S.V., Vorobev, S.A.: Sov. Phys. - Tech. Phys. 25, 650–651 (1980)

    Google Scholar 

  106. Baryshevsky, V.G., Dubovskaya, I.Ya., Grubich, A.O.: Phys. Lett. 77A, 61–64 (1980)

    Google Scholar 

  107. Ikezi, H., Lin-Liu, Y.R., Ohkawa, T.: Phys. Rev. B 30, 1567–1569 (1984)

    Article  ADS  Google Scholar 

  108. Mkrtchyan, A.R., Gasparyan, R.H., Gabrielyan, R.G., Mkrtchyan, A.G.: Phys. Lett. 126A, 528–530 (1988)

    Article  ADS  Google Scholar 

  109. Dedkov, G.V.: Phys. Stat. Sol. (b) 184, 535–542 (1994)

    Article  ADS  Google Scholar 

  110. Wagner, W., Azadegan, B., Büttig, H., Grigoryan, LSh., Mkrtchyan, A.R., Pawelke, J.: Nuovo Cimento C 34, 157–165 (2011)

    Google Scholar 

  111. Tzianaki, E., Bakarezos, M., Tsibidis, G.B., Orphanos, Y., Loukakos, P.A., et al.: Opt. Express 23, 17191–17204 (2015)

    Article  ADS  Google Scholar 

  112. Bakarezos, M., Tzianaki, E., Petrakis, S., Tsibidis, G., Loukakos, P.A., et al.: Ultrasonics 86, 14–19 (2018)

    Article  Google Scholar 

  113. Mkrtchyan, A.R., Gasparyan, R.A., Gabrielyan, R.G.: Phys. Lett. 115A, 410–412 (1986)

    Article  ADS  Google Scholar 

  114. Grigoryan, L.Sh., Mkrtchyan, A.R., Khachatryan, H.F., Wagner, W., Saharian, A.A., Baghdasaryan, K.S.: Nucl. Instrum. Method B 212, 51–55 (2003)

    Google Scholar 

  115. Wagner, W., Azadegan, B., Büttig, H., Pawelke, J., Sobiella, M., Grigoryan, L.Sh.: Probing channeling radiation influenced by ultrasound. In: Dabagov, S.B., Palumbo, L., Zichichi, A. (eds.) Charged and Neutral Particles Channeling Phenomena - Channeling 2008, pp. 378–407. World Scientific, Singapore (2010)

    Google Scholar 

  116. Wistisen, T.N., Di Piazza, A.: Phys. Rev. D 99, 116010 (2019)

    Article  ADS  Google Scholar 

  117. Andersen, J.U., Andersen, S.K., Augustyniak, W.M.: K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 39, 1–58 (1977)

    Google Scholar 

  118. Kostyuk, A., Korol, A.V., Solov’yov, A.V., Greiner, W.: J. Phys. B 44, 075208 (2011)

    Google Scholar 

  119. Barrett, J.H.: Phys. Rev. B 3, 1527–1547 (1971)

    Article  ADS  Google Scholar 

  120. Smulders, P.J.M., Boerma, D.O.: Nucl. Instum. Methods B 29, 471–489 (1987)

    Article  ADS  Google Scholar 

  121. Artru, X.: Nucl. Instrum. Method Phys. Res. B 48, 278–282 (1990)

    Article  Google Scholar 

  122. Biryukov, V.M.: Phys. Rev. E 51, 3522–3528 (1995)

    Article  ADS  Google Scholar 

  123. Fomin, S.P., Jejcic, A., Kasilov, V.I., Lapin, N.I., Maillard, J., et al.: Nucl. Instum. Methods B 129, 29–34 (1997)

    Article  ADS  Google Scholar 

  124. Shul’ga, N.F., Syshchenko, V.V.: Nucl. Instum. Methods B 227, 125–131 (2005)

    Article  ADS  Google Scholar 

  125. Bogdanov, O.V., Fiks, E.I., Korotchenko, K.B., Pivovarov, Yu.L., Tukhfatullin, T.A.: J. Phys. Conf. Ser. 236, 012029 (2010)

    Article  Google Scholar 

  126. Bagli, E., Guidi, V.: Nucl. Instrum. Meth. B 309, 124 (2013)

    Article  ADS  Google Scholar 

  127. Bagli, E., Guidi, V., Maisheev, V.A.: Phys. Rev. E 81, 026708 (2010)

    Article  ADS  Google Scholar 

  128. Bandiera, L., Bagli, E., Guidi, V., Tikhomirov, V.V.: Nucl. Instrum. Meth. B 355, 44 (2015)

    Article  ADS  Google Scholar 

  129. Baier, V.N., Katkov, V.M., Strakhovenko, V.M.: Electromagnetic Processes at High Energies in Oriented Single Crystals. World Scientific, Singapore (1998)

    Book  Google Scholar 

  130. Sytov, A.I., Tikhomirov, V.V., Bandiera, L.: Phys. Rev. Accel. Beams 22, 064601 (2019)

    Article  ADS  Google Scholar 

  131. Sytov, A., Tikhomirov, V.: Nucl. Instrum. Methods B 355, 383 (2015)

    Article  ADS  Google Scholar 

  132. Tikhomirov, V.V.: Phys. Rev. Accel. Beams 22, 054501 (2019)

    Article  ADS  Google Scholar 

  133. Guidi, V., Bandiera, L., Tikhomirov, V.: Phys. Rev. A 86, 042903 (2012)

    Article  ADS  Google Scholar 

  134. Korol, A.V., Solov’yov, A.V., Greiner, W.: J. Phys. G 27, 95–125 (2001)

    Article  ADS  Google Scholar 

  135. Nielsen, C.F.: Comp. Phys. Comm. 252, 107128 (2020)

    Article  Google Scholar 

  136. Doyle, P.A., Turner, P.S.: Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. A 24, 390–397 (1968)

    Google Scholar 

  137. Kostyuk, A.: Eur. Phys. J. D 67, 108 (2013)

    Article  ADS  Google Scholar 

  138. Bezchastnov, V.G., Korol, A.V., Solov’yov, A.V.: J. Phys. B 51, 168002 (2018)

    Article  ADS  Google Scholar 

  139. Sushko, G.B., Bezchastnov, V.G., Solov’yov, I.A., Korol, A.V., Greiner, W., Solov’yov, A.V.: Simulation of ultra-relativistic electrons and positrons channeling in crystals with MBN Explorer. J. Comp. Phys. 252, 404 (2013)

    Article  ADS  MATH  Google Scholar 

  140. Solov’yov, I.A., Yakubovich, A.V., Nikolaev, P.V., Volkovets, I., Solov’yov, A.V.: MesoBioNano explorer - a universal program for multiscale computer simulations of complex molecular structure and dynamics. J. Comp. Chem. 33, 2412–2439 (2012)

    Google Scholar 

  141. http://mbnresearch.com/get-mbn-explorer-software

  142. Sushko, G.B., Korol, A.V., Solov’yov, A.V.: Nucl. Instrum. Methods B 355, 39 (2015)

    Article  ADS  Google Scholar 

  143. Korol, A.V., Bezchastnov, V.G., Sushko, G.B., Solov’yov, A.V.: Nucl. Instrum. Meth. B 387, 41–53 (2016)

    Article  ADS  Google Scholar 

  144. Korol, A.V., Bezchastnov, V.G., Solov’yov, A.V.: Eur. Phys. J. D 71, 174 (2017)

    Article  ADS  Google Scholar 

  145. Shen, H., Zhao, Q., Zhang, F.S., Sushko, G.B., Korol, A.V., Solov’yov, A.V.: Nucl. Instrum. Meth. B 424, 26 (2018)

    Article  ADS  Google Scholar 

  146. Pavlov, A.V., Korol, A.V., Ivanov, V.K., Solov’yov, A.V.: J. Phys. B: At. Mol. Opt. Phys. 52, 11LT01 (2019)

    Google Scholar 

  147. Sushko, G.B., Bezchastnov, V.G., Korol, A.V., Greiner, W., Solov’yov, A.V., Polozkov, R.G., Ivanov, V.K.: J. Phys.: Conf. Ser. 438, 012019 (2013)

    Google Scholar 

  148. Sushko, G.B., Korol, A.V., Greiner, W., Solov’yov, A.V.: Sub-GeV electron and positron channeling. J. Phys.: Conf. Ser. 438, 012018 (2013)

    Google Scholar 

  149. Sushko, G.B., Korol, A.V., Solov’yov, A.V.: St. Petersburg Polytechnical Uni. J.: Phys. Math. 1, 332 (2015)

    Google Scholar 

  150. Sushko, G.B.: Atomistic Molecular Dynamics Approach for Channeling of Charged Particles in Oriented Crystals (Doctoral dissertation), Goethe-Universität, Frankfurt am Main (2015)

    Google Scholar 

  151. Pavlov, A.V., Korol, A.V., Ivanov, V.K., Solov’yov, A.V.: Eur. Phys. J. D 74, 21 (2020)

    Article  ADS  Google Scholar 

  152. Haurylavets, V.V., Leukovich, A., Sytov, A., Mazzolari, A., Bandiera, L., Korol, A.V., Sushko, G.B., Solovyov, A.V.: MBN Explorer atomistic simulations of electron propagation and radiation of 855 MeV electrons in oriented silicon bent crystal: theory versus experiment. Europ. Phys. J. Plus. 137, 34 (2022). arXiv preprint arXiv:2005.04138

  153. Korol, A.V., Sushko, G.B., Solov’yov, A.V.: Eur. Phys. J. D 75, 107 (2021)

    Article  ADS  Google Scholar 

  154. Molière, G.: Z. f. Naturforsch. A 2, 133–145 (1947)

    Article  ADS  Google Scholar 

  155. Pacios, L.F.: J. Comp. Chem. 14, 410–421 (1993)

    Article  Google Scholar 

  156. Sushko, G.B., Solov’yov, I.A., Solov’yov, A.V.: Europ. Phys. J. D 70, 217 (2016)

    Article  ADS  Google Scholar 

  157. Rossi, B., Greisen, K.: Rev. Mod. Phys. 13, 241 (1941). Prentice-Hall, Inc., New York

    Google Scholar 

  158. Beloshitsky, V.V., Kumakhov, M.A., Muralev, V.A.: Radiat. Eff. 20, 95 (1973)

    Article  Google Scholar 

  159. Backe, H., Kunz, P., Lauth, W., Rueda, A.: Nucl. Instrum. Method B 266, 3835–3851 (2008)

    Article  ADS  Google Scholar 

  160. Bogdanov, O.V., Dabagov, S.N.: J. Phys.: Conf. Ser. 357, 012029 (2012)

    Google Scholar 

  161. Backe, H., Lauth, W.: Nucl. Instrum. Meth. B 355, 24–29 (2015)

    Article  ADS  Google Scholar 

  162. Jackson, J.D.: Classical Electrodynamics. Wiley, Hoboken (1999)

    MATH  Google Scholar 

  163. Tsai, Y.-S.: Rev. Mod. Phys. 46, 815 (1974)

    Article  ADS  Google Scholar 

  164. Bak, J., Ellison, J.A., Marsh, B., Meyer, F.E., Pedersen, O., et al.: Nucl. Phys. B. 254, 491–527 (1985)

    Article  ADS  Google Scholar 

  165. Tikhomirov, V.V.: A benchmark construction of positron crystal undulator. arXiv preprint arXiv:1502.06588 (2015)

  166. Chouffani, K., Überall, H.: Phys. Status Sol. (b) 213, 107–151 (1999)

    Article  ADS  Google Scholar 

  167. Uggerhøj, E.: Rad. Eff. Def. Solids 25, 3–21 (1993)

    Article  Google Scholar 

  168. Schmüser, P., Dohlus, M., Rossbach, J.: Ultraviolet and Soft X-Ray Free-Electron Lasers. Springer, Berlin/Heidelberg (2008)

    Google Scholar 

  169. Rullhusen, P., Artru, X., Dhez, P.: Novel Radiation Sources Using Relativistic Electrons. World Scientific, Singapore (1998)

    Book  Google Scholar 

  170. Altarelli, M., Salam, A.: Europhysicsnews 35, 47–50 (2004)

    ADS  Google Scholar 

  171. Kim, K.-J.: Characteristics of synchrotron radiation. In: X-ray Data Booklet, pp. 2.1–2.16. Lawrence Berkeley Laboratory, Berkley (2009). http://xdb.lbl.gov/xdb-new.pdf

  172. Kim, K.-J.: Nucl. Instrum. Meth. A 246, 71–76 (1986)

    Article  ADS  Google Scholar 

  173. Ginzburg, V.L.: Theoretical Physics and Astrophysics. International Series in Natural Philosophy, vol. 99. Pergamon Press, Oxford (1979)

    Google Scholar 

  174. Schott, G.A.: Electromagnetic Radiation. Cambridge University Press, Cambridge (1912)

    MATH  Google Scholar 

  175. Ivanenko, D.D., Pomeranchuk, I.Ya.: On the maximum energy achievable in a betatron. Doklady Acad. Nauk 44, 343 (1944) (in Russian)

    Google Scholar 

  176. Schwinger, J.: Phys. Rev. 75, 1912 (1949)

    Article  ADS  MathSciNet  Google Scholar 

  177. Elder, F.R., Gurewitsch, A.M., Langmuir, R.V., Pollock, H.C.: Phys. Rev. 71, 829 (1947)

    Article  ADS  Google Scholar 

  178. Tavares, P.F., Leemann, S.C., Sjöström, M., Andersson, Å.J.: Synchrotron Rad. 21, 862 (2014)

    Article  Google Scholar 

  179. Ginzburg, V.L.: Radiation of microwaves and their absorption in air. Bull. Acad. Sci. USSR, Ser. Phys. 11, 165 (1947) (in Russian)

    Google Scholar 

  180. Motz, H.: J. Appl. Phys. 22, 527–534 (1951)

    Article  ADS  Google Scholar 

  181. Motz, H., Thon, W., Whitehurst, R.N.: J. Appl. Phys. 24, 826–833 (1953)

    Article  ADS  Google Scholar 

  182. Madey, J.M.J.: J. Appl. Phys. 42, 1906–1913 (1971)

    Article  ADS  Google Scholar 

  183. Deacon, D.A.G., Elias, L.R., Madey, J.M.J., Ramian, G.J., Schwettman, H.A., Smith, T.I.: Phys. Rev. Lett. 38, 892 (1977)

    Article  ADS  Google Scholar 

  184. Kondratenko, A.M., Saldin, E.L.: Part. Accel. 10, 207 (1980)

    Google Scholar 

  185. Bonifacio, R., Pellegrini, C., Narducci, L.M.: Opt. Commun. 50, 373–378 (1984)

    Article  ADS  Google Scholar 

  186. Kim, K.J.: Phys. Rev. Lett. 57, 1871 (1986)

    Article  ADS  Google Scholar 

  187. Bonifacio, R., Casagrande, F., Cerchioni, G., de Salvo Souza, L., Pierini, P., Piovella, N.: Rivista del Nuovo Cimento 13, 1–69 (1990)

    Article  ADS  Google Scholar 

  188. Luchini, P., Motz, H.: Undulators and Free-Electron Lasers. Oxford University Press, New York (1990)

    Google Scholar 

  189. Saldin, E.L., Schneidmiller, E.A., Yurkov, M.V.: The Physics of Free-Electron Lasers. Springer, Berlin/Heidelberg (1999)

    Google Scholar 

  190. Huang, Zh., Kim. K-J.: Phys. Rev. ST Accel. Beams 10, 034801 (2007)

    Google Scholar 

  191. Pellegrini, C., Marinelli, A., Reiche, S.: Rev. Mod. Phys. 88, 015006 (2016)

    Article  ADS  Google Scholar 

  192. Gover, A., Friedman, A., Emma, C., Sudar, N., Musumeci, P., Pellegrini, C.: Rev. Mod. Phys. 91, 035003 (2019)

    Article  ADS  Google Scholar 

  193. Federici, L., Giordano, G., Matone, G., Pasquariello, G., Picozza, P., et al.: Lett. Nuovo Cimento 27, 339 (1980)

    Article  Google Scholar 

  194. Federici, L., Giordano, G., Matone, G., Pasquariello, G., Picozza, P.G., et al.: Nuovo Cimento 59B, 247 (1980)

    Article  ADS  Google Scholar 

  195. ur Rehman, H., Lee, J., Kim, Y.: Ann. Nucl. Energy 105, 150 (2017)

    Google Scholar 

  196. Krämer, J.M., Jochmann, A., Budde, M., Bussmann, M., Couperus, J.P., et al.: Sci. Reports 8, 139 (2018)

    Google Scholar 

  197. ur Rehman, H., Lee, J., Kim, Y.: Int. J. Energy Res. 42, 236–244 (2018)

    Google Scholar 

  198. Kulikov, O.F., Telnov, Y.Y., Filippov, E.I., Yakimenko, M.N.: Phys. Lett. 13, 344 (1964)

    Article  ADS  Google Scholar 

  199. Bemporad, C., Milburn, R.H., Tanaka, N., Fotino, M.: Phys. Rev. 138, B1546 (1965)

    Article  ADS  Google Scholar 

  200. Ballam, J., Chadwick, G.B., Gearhart, R., Guiragossian, Z.G.T., Klein, P.R., et al.: Phys. Rev. Lett. 23, 498 (1969) (Erratum: Phys. Rev. Lett. 23, 817 (1969))

    Google Scholar 

  201. D’Angelo, A., Bartalini, O., Bellini, V., Levi Sandri, P., Moricciani, D., Nicoletti, L., Zucchiatti, A.: Nucl. Instrum. Meth. A 455, 1 (2000)

    Google Scholar 

  202. Schaerf, C.: Phys. Today 58, 44 (2005)

    Article  Google Scholar 

  203. Weller, H.R., Ahmed, M.W., Gao, H., Tornow, W., Wu, Y.K., Gai, M., Miskimen, R.: Prog. Part. Nucl. Phys. 62, 257 (2009)

    Google Scholar 

  204. Krafft, G.A., Priebe, G.: Rev. Accelerator Scie. Technol. 3, 147 (2010)

    Article  Google Scholar 

  205. Sei, N., Ogawa, H., Jia, Q.K.: Appl. Sci. 10, 1418 (2020)

    Google Scholar 

  206. Howell, C.R., Ahmed, M.W., Afanasev, A., Alesini, D., Annand, J.R.M., et al.: International Workshop on Next Generation Gamma-Ray Source. arXiv preprint arXiv:2012.10843 (2020)

  207. Wu, Y.K., Vinokurov, N.A., Mikhailov, S., Li, J., Popov, V.: Phys. Rev. Lett. 96, 224801 (2006)

    Article  ADS  Google Scholar 

  208. Krasny, M.W.: The Gamma Factory proposal for CERN. Photon-2017 Conference, May 22–29, 2017 8CERN, Geneva. https://indico.cern.ch/event/604619/contributions/2474166/attachments/ 1463495/2261413/Witold_Krasny_Photon_2017.pdf

  209. Schaumann, M., Alemany-Fernández, R., Bartosik, H., Bohl, Th., Bruce, R. et al: First partially stripped ions in the LHC (\(^{208}\)Pb\(^{81+}\)). In: Proceedings, 10th International Particle Accelerator Conference (IPAC2019), page MOPRB055 (Melbourne, Australia, May 19–24, 2019)

    Google Scholar 

  210. Tajima, T., Dawson, J.: Phys. Rev. Lett. 43, 267 (1979)

    Google Scholar 

  211. Pukhov, A., Meyer-ter-Vehn, J.: Appl. Phys. B 74, 355 (2002)

    Article  ADS  Google Scholar 

  212. Esarey, E., Schroeder, C.B., Leemans, W.P.: Rev. Mod. Phys. 81, 1229 (2009)

    Article  ADS  Google Scholar 

  213. Zhu, X.-L., Chen, M., Weng, S.-M., Yu, T.-P., Wang, W.-M., He, F., et al.: Sci. Adv. 6, eaaz7240 (2020)

    Google Scholar 

  214. Kumakhov, M.A., Komarov, F.F.: Radiation from Charged Particles in Solids AIP. New York (1989)

    Google Scholar 

  215. Barbini, R., Ciocci, F., Datolli, G., Gianessi, L.: Rivista del Nuovo Cimento 13, 1–65 (1990)

    Article  ADS  Google Scholar 

  216. Alferov, D.F., Bashmakov, Yu.A., Cherenkov, P.A.: Sov. Phys. - Uspekhi 32, 200–227 (1989)

    Article  ADS  Google Scholar 

  217. Schneider-Muntau, H.J., Toth, J., Weijers, H.W.: IEEE Trans. Appl. Supercond. 14, 1245–1252 (2004)

    Article  ADS  Google Scholar 

  218. The European X-ray Laser Project XFEL. http://www.xfel.eu/

  219. Backe, H., Lauth, W., Kunz, P., Rueda, A., Esberg, J., Kirsebom, K., Hansen, J.L., Uggerhøj, U.K.I.: Photon Emission of Electrons in a Crystalline Undulator. In: Dabagov, S.B., Palumbo, L., Zichichi, A. (eds.) Proceedings of the 51st Workshop Charged and Neutral Particles Channeling Phenomena Channeling 2008, Erice, Italy, Oct. 2008, pp. 281–290. World Scientific, Singapore/Hackensack (2010)

    Google Scholar 

  220. Mao, F., Sushko, G.B., Korol, A.V., Solov’yov, A.V., Cheng, W., Sang, H., Zhang, F.-S.: Radiation by ultra-relativistic positrons and electrons channeling in periodically bent diamond crystals. Unpublished (2015)

    Google Scholar 

  221. https://www6.slac.stanford.edu/facilities/facet.aspx

  222. Backe, H., Lauth, W.: Channeling experiments with electrons at the mainz microtron. In: 4th International Conference on “Dynamics of Systems on the Nanoscale” (Bad Ems, Germany, Oct. 3–7 2016) Book of Abstracts, p. 58 (2016)

    Google Scholar 

  223. Taratin, A.M., Vorobiev, S.A.: Phys. Lett. 119, 425 (1987)

    Article  Google Scholar 

  224. Taratin, A.M., Vorobiev, S.A.: Nucl. Instrum. Meth. B 26, 512 (1987)

    Article  ADS  Google Scholar 

  225. Shul’ga, N.F., Boyko, V.V., Esaulov, A.S.: Phys. Lett. A 372, 2065–2068 (2008)

    Article  ADS  Google Scholar 

  226. Nielsen, C.F., Uggerhøj, U.I., Holtzapple, R., Markiewicz, T.W., Benson, B.C., Bagli, E., Bandiera, L., Guidi, V., Mazzolari, A., Wienands, U.: Phys. Rev. Acc. Beams 22, 114701 (2019)

    Article  ADS  Google Scholar 

  227. Backe, H., Lauth, W., Tran Thi, T.N.: J. Instrum. (JINST) 13, C04022 (2018)

    Google Scholar 

  228. Boshoff, D., Copeland, M., Haffejee, F., Kilbourn, Q., Mercer, C., Osatov, A., Williamson, C., et al.: The search for diamond crystal undulator radiation. In: 4th International Conference on “Dynamics of Systems on the Nanoscale” (Bad Ems, Germany, Oct. 3–7 2016) Book of Abstracts, p. 38 (2016)

    Google Scholar 

  229. Pavlov, A., Korol, A., Ivanov, V., Solov’yov, A.: St. Petersburg Polytechnical Uni. J.: Phys. Math. 14, 190 (2021). (arXiv.org: arXiv:2004.07043)

  230. Backe, H., Krambrich, D., Lauth, W., Andersen, K.K., Hansen, J.L., Uggerhøj, U.I.: J. Phys. Conf. Ser. 438, 012017 (2013)

    Google Scholar 

  231. The DA\(\Phi \)NE Beam-Test Facility. http://www.lnf.infn.it/acceleratori/btf/

  232. Medvedev, M.V.: Astrophys. J. 540, 704–714 (2000)

    Google Scholar 

  233. Kellner, S.R., Aharonian, F.A., Khangulyan, D.: Astrophys. J. 774, 61 (2013)

    Google Scholar 

  234. Banks, M.: Italy cancels €1bn SuperB collider. Physics World (2012). https://physicsworld.com/a/italy-cancels-1bn-superb-collider/

  235. Pavlov, A.V., Korol, A.V., Ivanov, V.K., Solov’yov, A.V.: Unpublished (2020)

    Google Scholar 

  236. Kostyuk, A., Korol, A.V., Solov’yov, A.V., Greiner, W.J.: Phys. B At. Mol. Opt. Phys. 43, 151001 (2010)

    Article  ADS  Google Scholar 

  237. Abramowitz, M., Stegun, I.E.: Handbook of Mathematical Functions. Dover, New York (1964)

    Google Scholar 

  238. Kostyuk, A., Korol, A.V., Solov’yov, A.V., Greiner, W.: Nucl. Instrum. Method B 269, 1482–1492 (2011)

    Article  ADS  Google Scholar 

  239. Ledingham, K.W.D., McKenna, P., Singhal, R.P.: Science 300, 1107 (2003)

    Article  ADS  Google Scholar 

  240. Hajima, R., Hakayama, T., Kikuzawa, N., Minehara, E.: J. Nucl. Sci. Technol. 45, 441–451 (2008)

    Article  Google Scholar 

  241. Ledingham, K.W.D., Singhal, R.P., McKenna, P., Spencer, I.: Europhys. News 33, 120 (2002)

    Article  ADS  Google Scholar 

  242. Weon, B.M., Je, J.H., Hwu, Y., Margaritondo, G.: Phys. Rev. Lett. 100, 217403 (2008)

    Article  ADS  Google Scholar 

  243. Solov’yov, A.V. (ed.): Nanoscale Insights into Ion-Beam Cancer Therapy. Springer, Cham, Switzerland (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey V. Solov’yov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korol, A.V., Solov’yov, A.V. (2022). Novel Light Sources Beyond FELs. In: Solov'yov, I.A., Verkhovtsev, A.V., Korol, A.V., Solov'yov, A.V. (eds) Dynamics of Systems on the Nanoscale. Lecture Notes in Nanoscale Science and Technology, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-030-99291-0_10

Download citation

Publish with us

Policies and ethics