Abramsky, S., Barbosa, R.S., Karvonen, M., Mansfield, S.: A comonadic view of simulation and quantum resources. In: 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE (2019). https://doi.org/10.1109/LICS.2019.8785677
Backes, M., Pfitzmann, B., Waidner, M.: A general composition theorem for secure reactive systems. In: 1st Theory of Cryptography Conference—TCC 2004. pp. 336–354 (2004). https://doi.org/10.1007/978-3-540-24638-1_19
Backes, M., Pfitzmann, B., Waidner, M.: The reactive simulatability (RSIM) framework for asynchronous systems. Information and Computation 205(12), 1685–1720 (2007). https://doi.org/10.1016/j.ic.2007.05.002
Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In: Proceedings of the twenty-fifth annual ACM symposium on Theory of computing. pp. 52–61 (1993). https://doi.org/10.1145/167088.167109
Ben-Or, M., Horodecki, M., Leung, D.W., Mayers, D., Oppenheim, J.: The universal composable security of quantum key distribution. In: 2nd Theory of Cryptography Conference—TCC 2005. pp. 386–406 (2005). https://doi.org/10.1007/978-3-540-30576-7_21
Ben-Or, M., Mayers, D.: General security definition and composability for quantum & classical protocols (2004), https://arxiv.org/abs/quant-ph/0409062
Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: International Conference on Computers, Systems and Signal Processing. pp. 175–179 (1984)
Google Scholar
Biham, E., Boyer, M., Boykin, P.O., Mor, T., Roychowdhury, V.: A proof of the security of quantum key distribution (extended abstract). In: 32nd Annual ACM Symposium on Theory of Computing—STOC 2000. pp. 715 – 724 (2000). https://doi.org/10.1145/335305.335406
Breiner, S., Kalev, A., Miller, C.A.: Parallel self-testing of the GHZ state with a proof by diagrams. In: Proceedings of QPL 2018. Electronic Proceedings in Theoretical Computer Science, vol. 287, pp. 43–66 (2018). https://doi.org/10.4204/eptcs.287.3
Breiner, S., Miller, C.A., Ross, N.J.: Graphical methods in device-independent quantum cryptography. Quantum 3, 146 (2019). https://doi.org/10.22331/q-2019-05-27-146
Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation. In: 50th Annual Symposium on Foundations of Computer Science—FOCS 2009. pp. 517–526 (2009). https://doi.org/10.1109/FOCS.2009.36
Camenisch, J., Küsters, R., Lysyanskaya, A., Scafuro, A.: Practical Yet Composably Secure Cryptographic Protocols (Dagstuhl Seminar 19042). Dagstuhl Reports 9(1), 88–103 (2019). https://doi.org/10.4230/DagRep.9.1.88
Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: 42nd Annual Symposium on Foundations of Computer Science—FOCS 2001. pp. 136–145 (2001). https://doi.org/10.1109/SFCS.2001.959888
Canetti, R., Fischlin, M.: Universally composable commitments. In: Advances in cryptology—CRYPTO 2001. pp. 19–40. Springer (2001). https://doi.org/10.1007/3-540-44647-8_2
Chiribella, G., D’Ariano, G.M., Perinotti, P.: Probabilistic theories with purification. Physical Review A 81(6) (Jun 2010). https://doi.org/10.1103/physreva.81.062348
Chitambar, E., Gour, G.: Quantum resource theories. Reviews of Modern Physics 91(2), 025001 (2019). https://doi.org/10.1103/revmodphys.91.025001
Chitambar, E., Leung, D., Mančinska, L., Ozols, M., Winter, A.: Everything you always wanted to know about LOCC (but were afraid to ask). Communications in Mathematical Physics 328(1), 303–326 (2014). https://doi.org/10.1007/s00220-014-1953-9
Clairambault, P., De Visme, M., Winskel, G.: Game semantics for quantum programming. Proceedings of the ACM on Programming Languages 3(POPL), 1–29 (2019). https://doi.org/10.1145/3290345
Clairambault, P., de Visme, M., Winskel, G.: Concurrent quantum strategies. In: International Conference on Reversible Computation. pp. 3–19. Springer (2019). https://doi.org/10.1007/978-3-030-21500-2_1
Coecke, B., Fritz, T., Spekkens, R.W.: A mathematical theory of resources. Information and Computation 250, 59–86 (2016). https://doi.org/10.1016/j.ic.2016.02.008
Coecke, B., Perdrix, S.: Environment and classical channels in categorical quantum mechanics. Logical Methods in Computer Science Volume 8, Issue 4 (2012). https://doi.org/10.2168/LMCS-8(4:14)2012
Coecke, B., Wang, Q., Wang, B., Wang, Y., Zhang, Q.: Graphical calculus for quantum key distribution (extended abstract). Electronic Notes in Theoretical Computer Science 270(2), 231–249 (2011). https://doi.org/10.1016/j.entcs.2011.01.034
Cruttwell, G., Gavranović, B., Ghani, N., Wilson, P., Zanasi, F.: Categorical foundations of gradient-based learning (2021), https://arxiv.org/abs/2103.01931
Cunningham, O., Heunen, C.: Purity through factorisation. In: Proceedings of QPL 2017. Electronic Proceedings in Theoretical Computer Science, vol. 266, pp. 315–328 (2017). https://doi.org/10.4204/EPTCS.266.20
Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: A derivation system for security protocols and its logical formalization. In: 16th IEEE Computer Security Foundations Workshop, 2003. Proceedings. pp. 109–125. IEEE (2003). https://doi.org/10.1109/csfw.2003.1212708
Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: Secure protocol composition. Electronic Notes in Theoretical Computer Science 83, 201–226 (2003). https://doi.org/10.1016/s1571-0661(03)50011-1
Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: A derivation system and compositional logic for security protocols. Journal of Computer Security 13(3), 423–482 (Aug 2005). https://doi.org/10.3233/JCS-2005-13304
Datta, A., Derek, A., Mitchell, J.C., Roy, A.: Protocol composition logic (PCL). Electronic Notes in Theoretical Computer Science 172, 311–358 (Apr 2007). https://doi.org/10.1016/j.entcs.2007.02.012
Durgin, N., Mitchell, J., Pavlovic, D.: A compositional logic for protocol correctness. In: Proceedings. 14th IEEE Computer Security Foundations Workshop, 2001. IEEE (2001). https://doi.org/10.1109/csfw.2001.930150
Durgin, N., Mitchell, J., Pavlovic, D.: A compositional logic for proving security properties of protocols. Journal of Computer Security 11(4), 677–721 (Oct 2003). https://doi.org/10.3233/JCS-2003-11407
Fong, B., Spivak, D., Tuyeras, R.: Backprop as functor: A compositional perspective on supervised learning. In: 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) (2019). https://doi.org/10.1109/lics.2019.8785665
Fritz, T.: Resource convertibility and ordered commutative monoids. Mathematical Structures in Computer Science 27(6), 850–938 (2015). https://doi.org/10.1017/s0960129515000444
Gavranović, B.: Compositional deep learning (2019), https://arxiv.org/abs/1907.08292
Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sciences 28(2), 270–299 (1984). https://doi.org/10.1016/0022-0000(84)90070-9
Heunen, C.: Compactly accessible categories and quantum key distribution. Logical Methods in Computer Science 4(4) (2008). https://doi.org/10.2168/lmcs-4(4:9)2008
Hillebrand, A.: Superdense coding with GHZ and quantum key distribution with W in the ZX-calculus. In: Proceedings of QPL 2011. Electronic Proceedings in Theoretical Computer Science, vol. 95, pp. 103–121 (2011). https://doi.org/10.4204/EPTCS.95.10
Hines, P.M.: A diagrammatic approach to information flow in encrypted communication (2020). https://doi.org/10.1007/978-3-030-62230-5_9
Hofheinz, D., Shoup, V.: GNUC: A new universal composability framework. Journal of Cryptology 28(3), 423–508 (2015). https://doi.org/10.1007/s00145-013-9160-y
Horodecki, M., Oppenheim, J.: (Quantumness in the context of) Resource Theories. International Journal of Modern Physics B 27(01n03), 1345019 (2013). https://doi.org/10.1142/s0217979213450197
Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchronous computation. In: Theory of Cryptography, pp. 477–498. Springer (2013). https://doi.org/10.1007/978-3-642-36594-2_27
Kissinger, A., Tull, S., Westerbaan, B.: Picture-perfect quantum key distribution (2017), https://arxiv.org/abs/1704.08668
König, R., Renner, R., Bariska, A., Maurer, U.: Small accessible quantum information does not imply security. Physical Review Letters 98(14), 140502 (2007). https://doi.org/10.1103/PhysRevLett.98.140502
Küsters, R., Tuengerthal, M., Rausch, D.: The IITM model: a simple and expressive model for universal composability. Journal of Cryptology 33(4), 1461–1584 (2020). https://doi.org/10.1007/s00145-020-09352-1
Liao, K., Hammer, M.A., Miller, A.: ILC: a calculus for composable, computational cryptography. In: Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation. pp. 640–654. ACM (Jun 2019). https://doi.org/10.1145/3314221.3314607
Lo, H.K., Chau, H.F.: Is quantum bit commitment really possible? Physical Review Letters 78(17), 3410–3413 (1997). https://doi.org/10.1103/PhysRevLett.78.3410
Matt, C., Maurer, U., Portmann, C., Renner, R., Tackmann, B.: Toward an algebraic theory of systems. Theoretical Computer Science 747, 1–25 (2018). https://doi.org/10.1016/j.tcs.2018.06.001
Maurer, U.: Constructive cryptography–a new paradigm for security definitions and proofs. In: Joint Workshop on Theory of Security and Applications—TOSCA 2011. pp. 33–56 (2011). https://doi.org/10.1007/978-3-642-27375-9_3
Maurer, U., Renner, R.: Abstract cryptography. In: Innovations in Computer Science—ICS 2011 (2011)
Google Scholar
Mayers, D.: The trouble with quantum bit commitment (1996), http://arxiv.org/abs/quant-ph/9603015
Mayers, D.: Unconditional security in quantum cryptography. Journal of the ACM 48(3), 351–406 (2001). https://doi.org/10.1145/382780.382781
Micciancio, D., Tessaro, S.: An equational approach to secure multi-party computation. In: 4th Conference on Innovations in Theoretical Computer Science—ITCS 2013. pp. 355–372 (2013). https://doi.org/10.1145/2422436.2422478
Mifsud, A., Milner, R., Power, J.: Control structures. In: Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science. pp. 188–198. IEEE (1995). https://doi.org/10.1109/lics.1995.523256
Moeller, J., Vasilakopoulou, C.: Monoidal Grothendieck construction. Theory and Applications of Categories 35(31), 1159–1207 (2020)
Google Scholar
Müller-Quade, J., Renner, R.: Composability in quantum cryptography. New Journal of Physics 11(8), 085006 (2009). https://doi.org/10.1088/1367-2630/11/8/085006
Pavlovic, D.: Categorical logic of names and abstraction in action calculi. Mathematical Structures in Computer Science 7(6), 619–637 (1997). https://doi.org/10.1017/S0960129597002296
Pavlovic, D.: Tracing the man in the middle in monoidal categories. In: Coalgebraic Methods in Computer Science. pp. 191–217. Springer (2012). https://doi.org/10.1007/978-3-642-32784-1_11
Pavlovic, D.: Chasing diagrams in cryptography. In: Casadio, C., Coecke, B., Moortgat, M., Scott, P. (eds.) Categories and Types in Logic, Language, and Physics: Essays Dedicated to Jim Lambek on the Occasion of His 90th Birthday, pp. 353–367. Springer Berlin Heidelberg, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54789-8_19
Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its application to secure message transmission. In: 2001 IEEE Symposium on Security and Privacy—S&P 2001. pp. 184–200 (2000). https://doi.org/10.1109/SECPRI.2001.924298
Portmann, C., Matt, C., Maurer, U., Renner, R., Tackmann, B.: Causal boxes: quantum information-processing systems closed under composition. IEEE Transactions on Information Theory 63(5), 3277–3305 (2017). https://doi.org/10.1109/TIT.2017.2676805
Portmann, C., Renner, R.: Cryptographic security of quantum key distribution (2014), https://arxiv.org/abs/1409.3525
Prabhakaran, M., Rosulek, M.: Cryptographic complexity of multi-party computation problems: Classifications and separations. In: Advances in Cryptology—CRYPTO 2008. pp. 262–279 (2008). https://doi.org/10.1007/978-3-540-85174-5_15
Renner, R.: Security of quantum key distribution. International Journal of Quantum Information 06(01), 1–127 (2005). https://doi.org/10.1142/S0219749908003256
Selinger, P.: A survey of graphical languages for monoidal categories. In: New structures for physics, pp. 289–355. Springer (2010). https://doi.org/10.1007/978-3-642-12821-9_4
Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Physical Review Letters 85(2), 441–444 (2000). https://doi.org/10.1103/physrevlett.85.441
Stay, M., Vicary, J.: Bicategorical semantics for nondeterministic computation. In: Proceedings of the Twenty-ninth Conference on the Mathematical Foundations of Programming Semantics, MFPS XXIX. Electronic Notes in Theoretical Computer Science, vol. 298, pp. 367 – 382 (2013). https://doi.org/10.1016/j.entcs.2013.09.022
Sun, X., He, F., Wang, Q.: Impossibility of quantum bit commitment, a categorical perspective. Axioms 9(1), 28 (2020). https://doi.org/10.3390/axioms9010028
Tomamichel, M., Lim, C.C.W., Gisin, N., Renner, R.: Tight finite-key analysis for quantum cryptography. Nature Communications 3, 634 (2012). https://doi.org/10.1038/ncomms1631
Unruh, D.: Universally composable quantum multi-party computation. In: Advances in Cryptology—EUROCRYPT 2010. pp. 486–505 (2010). https://doi.org/10.1007/978-3-642-13190-5_25
Winskel, G.: Distributed probabilistic and quantum strategies. Electronic Notes in Theoretical Computer Science 298, 403–425 (2013). https://doi.org/10.1016/j.entcs.2013.09.024
Wolf, S., Wullschleger, J.: New monotones and lower bounds in unconditional two-party computation. IEEE Transactions on Information Theory 54(6), 2792–2797 (2008). https://doi.org/10.1109/tit.2008.921674