Abstract
Monad-comonad interaction laws are a mathematical concept for describing communication protocols between effectful computations and coeffectful environments in the paradigm where notions of effectful computation are modelled by monads and notions of coeffectful environment by comonads. We show that monad-comonad interaction laws are an instance of measuring maps from Sweedler theory for duoidal categories whereby the final interacting comonad for a monad and a residual monad arises as the Sweedler hom and the initial residual monad for a monad and an interacting comonad as the Sweedler copower. We then combine this with a (co)algebraic characterization of monad-comonad interaction laws to derive descriptions of the Sweedler hom and the Sweedler copower in terms of their coalgebras resp. algebras.
Keywords
- (co)monads
- (co)algebras
- interaction laws
- runners
- duoidal categories
- Sweedler operations
Download conference paper PDF
References
Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories, London Math. Soc. Lecture Note Series, vol. 189. Cambridge University Press (1994)
Aguiar, M., Mahajan, S.: Monoidal Functors, Species and Hopf Algebras, CRM Monograph Series, vol. 29. Amer. Math. Soc. (2010)
Anel, M., Joyal, A.: Sweedler theory of (co)algebras and the bar-cobar construction. arXiv eprint 1309.6952 [math.CT] (2013), https://arxiv.org/abs/1309.6952
Bergman, G.M.: An Invitation to General Algebra and Universal Constructions. Universitext, Springer (2015). https://doi.org/10.1007/978-3-319-11478-1, author’s revised version at https://math.berkeley.edu/~gbergman/245/
Bergman, G.M., Hausknecht, A.O.: Cogroups and Co-rings in Categories of Associative Rings, AMS Mathematical Surveys and Monographs, vol. 45. Amer. Math. Soc. (1996)
Bird, G.J.: Limits in 2-Categories of Locally-Presented Categories. Ph.D. thesis, University of Sydney (1984)
Borceux, F., Quinteiro, C.: Enriched accessible categories. Bull. Austral. Math. Soc. 54, 489–501 (1996). https://doi.org/10.1017/s0004972700021900
Freeman, P.: Comonads as spaces (a series of blog posts) (2016), https://blog.functorial.com/posts/2016-08-07-Comonads-As-Spaces.html
Freyd, P.: Algebra valued functors in general and tensor products in particular. Coll. Math. 14(1), 89–106 (1966). https://doi.org/10.4064/cm-14-1-89-106
Garner, R.: Understanding the small object argument. Appl. Categ. Struct. 17(3), 247–285 (2009). https://doi.org/10.1007/s10485-008-9137-4
Garner, R.: Stream processors and comodels. In: Gadducci, F., Silva, A. (eds.) Proc. of 9th Conf. on Algebra and Coalgebra in Computer Science, CALCO 2021 (Salzburg, Aug./Sept. 2021), Leibniz Int. Proc. in Informatics, vol. 211, pp. 15:1–15:17. Dagstuhl Publishing (2021). https://doi.org/10.4230/lipics.calco.2021.15
Garner, R.: The costructure-cosemantics adjunction for comodels for computational effects. Math. Struct. Comput. Sci. (to appear). https://doi.org/10.1017/s0960129521000219
Garner, R., López Franco, I.: Commutativity. J. Pure Appl. Algebra 204(2), 1707–1751 (2016). https://doi.org/10.1016/j.jpaa.2015.09.003
Hyland, M., López Franco, I., Vasilakopoulou, C.: Hopf measuring comonoids and enrichment. Proc. London Math. Soc. 115(3), 1118–1148 (2017). https://doi.org/10.1112/plms.12064
Kan, D.M.: On monoids and their dual. Bol. Soc. Mat. Mexicana, Ser. 2 3, 52–61 (1958)
Katsumata, S., Rivas, E., Uustalu, T.: Interaction laws of monads and comonads. In: Proc. of 35th Ann. ACM/IEEE Symp. on Logic in Computer Science, LICS 2020 (Saarbrücken, July 2020), pp. 604–618. ACM (2020). https://doi.org/10.1145/3373718.3394808
Kelly, G.M.: Basic Concepts of Enriched Category Theory, London Math. Soc. Lecture Note Series, vol. 64. Cambridge University Press (1982), reprinted (2005) as: Reprints in Theory and Applications of Categories 10, http://www.tac.mta.ca/tac/reprints/articles/10/tr10abs.html
Kelly, M.G.: Structures defined by finite limits in the enriched context, I. Cahiers Topol. Géom. Différentielle Catégoriques 23(1), 3–42 (1982)
Kmett, E.: Monads from comonads (a series of blog posts) (2011), http://comonad.com/reader/2011/monads-from-comonads/
López Franco, I., Vasilakopoulou, C.: Duoidal categories, measuring comonoids and enrichment. arXiv eprint 2005.01340 [math.CT] (2020), https://arxiv.org/abs/2005.01340
Makkai, M., Paré, R.: Accessible Categories: The Foundations of Categorical Model Theory: The Foundations of Categorical Model Theory, Contemporary Mathematics, vol. 104. Amer. Math. Soc. (1989)
Møgelberg, R.E., Staton, S.: Linear usage of state. Log. Methods Comput. Sci. 10(1) (2014). https://doi.org/10.2168/lmcs-10(1:17)2014
Moggi, E.: Computational lambda-calculus and monads. In: Proc. of 4th Ann. Symp. on Logic in Computer Science, LICS ’89, pp. 14–23. IEEE Press (1989). https://doi.org/10.1109/lics.1989.39155
Plotkin, G., Power, J.: Tensors of comodels and models for operational semantics. Electron. Notes Theor. Comput. Sci. 218, 295–311 (2008). https://doi.org/10.1016/j.entcs.2008.10.018
Poinsot, L., Porst, H.E.: Internal coalgebras in cocomplete categories: Generalizing the Eilenberg-Watts theorem. J. Algebra Appl. 20(9), art. 2510165 (2021). https://doi.org/10.1142/s0219498821501656
Popescu, N., Popescu, L.: Theory of Categories. Editura Academiei / Sijthoff & Noordhoff Int. Publishers (1979)
Porst, H.E.: On categories of monoids, comonoids, and bimonoids. Quaest. Math. 31(2), 127–139 (2008). https://doi.org/10.2989/qm.2008.31.2.2.474
Porst, H.E., Street, R.: Generalizations of the Sweedler dual. Appl. Categ. Struct. 24, 619–647 (2016). https://doi.org/10.1007/s10485-016-9450-2
Power, J., Shkaravska, O.: From comodels to coalgebras: State and arrays. Electron. Notes Theor. Comput. Sci. 106, 297–314 (2004). https://doi.org/10.1016/j.entcs.2004.02.041
Sweedler, M.E.: Hopf Algebras. Math. Lecture Note Series, W. A. Benjamin (1969)
Tall, D.O., Wraith, G.C.: Representable functors and operations on rings. Proc. London Math. Soc., Ser. 3 20(4), 619–643 (1970). https://doi.org/10.1112/plms/s3-20.4.619
Uustalu, T.: Stateful runners for effectful computations. Electron. Notes Theor. Comput. Sci. 319, 403–421 (2015). https://doi.org/10.1016/j.entcs.2015.12.024
Uustalu, T., Voorneveld, N.: Algebraic and coalgebraic perspectives on interaction laws. In: d. S. Oliveira, B.C. (ed.) Proc. of 18th Asian Symp. on Programming Languages and Systems, APLAS 2020 (Fukuoka, Nov./Dec. 2020), Lect. Notes Comput. Sci., vol. 12470, pp. 186–205. Springer (2020). https://doi.org/10.1007/978-3-030-64437-6_10
Wraith, G.C.: Algebraic Theories (Lectures Autumn 1969, Revised Version of Notes), Lecture Note Series, vol. 22. Aarhus Universitet, Matematisk Institut (1975)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
Copyright information
© 2022 The Author(s)
About this paper
Cite this paper
McDermott, D., Rivas, E., Uustalu, T. (2022). Sweedler Theory of Monads. In: Bouyer, P., Schröder, L. (eds) Foundations of Software Science and Computation Structures. FoSSaCS 2022. Lecture Notes in Computer Science, vol 13242. Springer, Cham. https://doi.org/10.1007/978-3-030-99253-8_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-99253-8_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-99252-1
Online ISBN: 978-3-030-99253-8
eBook Packages: Computer ScienceComputer Science (R0)
-
Published in cooperation with
http://www.etaps.org/