Abstract
We give a new quantifier elimination procedure for Presburger arithmetic extended with a unary counting quantifier \(\exists ^{= x} y\, \mathrm {\Phi }\) that binds to the variable \(x\) the number of different \(y\) satisfying \(\mathrm {\Phi }\). While our procedure runs in non-elementary time in general, we show that it yields nearly optimal elementary complexity results for expressive counting extensions of Presburger arithmetic, such as the threshold counting quantifier \(\exists ^{\ge c} y\, \mathrm {\Phi }\) that requires that the number of different y satisfying \(\mathrm {\Phi }\) be at least \(c\in \mathbb {N}\), where c can succinctly be defined by a Presburger formula. Our results are cast in terms of what we call the monadically-guarded fragment of Presburger arithmetic with unary counting quantifiers, for which we develop a 2ExpSpace decision procedure.
Download conference paper PDF
References
Apelt, H.: Axiomatische Untersuchungen über einige mit der Presburgerschen Arithmetik verwandte Systeme. Math. Log. Q. 12(1), 131–168 (1966)
Barvinok, A.I.: A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. Math. Oper. Res. 19(4), 769–779 (1994)
Berman, L.: The complexity of logical theories. Theor. Comput. Sci. 11(1), 71–77 (1980)
Habermehl, P., Kuske, D.: On Presburger arithmetic extended with modulo counting quantifiers. In: Proc. Foundations of Software Science and Computation Structures, FoSSaCS. Lect. Notes Comput. Sc., vol. 9034, pp. 375–389. Springer (2015)
Hague, M., Lin, A.W., Rümmer, P., Wu, Z.: Monadic decomposition in integer linear arithmetic. In: Proc. International Joint Conference on Automated Reasoning, IJCAR. Lect. Notes Comput. Sc., vol. 12166, pp. 122–140. Springer (2020)
Herre, H., Krynicki, M., Pinus, A., Väänänen, J.: The Härtig quantifier: A survey. J. Symb. Comput. 56(4), 1153–1183 (1991)
Kozen, D.: Theory of Computation. Texts in Computer Science, Springer (2006)
Oppen, D.C.: A \(2^{2^{2^{pn}}}\) upper bound on the complexity of Presburger arithmetic. J. Comput. Syst. Sci. 16(3), 323–332 (1978)
Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In: Comptes Rendus du I congres de Mathematiciens des Pays Slaves, pp. 92–101. American Mathematical Society (1929)
Schweikardt, N.: Arithmetic, first-order logic, and counting quantifiers. ACM Trans. Comput. Log. 6(3), 634–671 (2005)
Veanes, M., Bjørner, N., Nachmanson, L., Bereg, S.: Monadic decomposition. J. ACM 64(2), 14:1–14:28 (2017)
Weispfenning, V.: The complexity of almost linear diophantine problems. J. Symb. Comput. 10(5), 395–404 (1990)
Woods, K.: Presburger arithmetic, rational generating functions, and quasi-polynomials. J. Symb. Log. 80(2), 433–449 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
Copyright information
© 2022 The Author(s)
About this paper
Cite this paper
Chistikov, D., Haase, C., Mansutti, A. (2022). Quantifier elimination for counting extensions of Presburger arithmetic. In: Bouyer, P., Schröder, L. (eds) Foundations of Software Science and Computation Structures. FoSSaCS 2022. Lecture Notes in Computer Science, vol 13242. Springer, Cham. https://doi.org/10.1007/978-3-030-99253-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-99253-8_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-99252-1
Online ISBN: 978-3-030-99253-8
eBook Packages: Computer ScienceComputer Science (R0)
-
Published in cooperation with
http://www.etaps.org/