Skip to main content

Advertisement

SpringerLink
Book cover

International Conference on Foundations of Software Science and Computation Structures

FoSSaCS 2022: Foundations of Software Science and Computation Structures pp 225–243Cite as

  1. Home
  2. Foundations of Software Science and Computation Structures
  3. Conference paper
Quantifier elimination for counting extensions of Presburger arithmetic

Quantifier elimination for counting extensions of Presburger arithmetic

  • Dmitry Chistikov  ORCID: orcid.org/0000-0001-9055-918X10,
  • Christoph Haase  ORCID: orcid.org/0000-0002-5452-936X11 &
  • Alessio Mansutti  ORCID: orcid.org/0000-0002-1104-729911 
  • Conference paper
  • Open Access
  • First Online: 29 March 2022
  • 1240 Accesses

  • 1 Citations

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13242)

Abstract

We give a new quantifier elimination procedure for Presburger arithmetic extended with a unary counting quantifier \(\exists ^{= x} y\, \mathrm {\Phi }\) that binds to the variable \(x\) the number of different \(y\) satisfying \(\mathrm {\Phi }\). While our procedure runs in non-elementary time in general, we show that it yields nearly optimal elementary complexity results for expressive counting extensions of Presburger arithmetic, such as the threshold counting quantifier \(\exists ^{\ge c} y\, \mathrm {\Phi }\) that requires that the number of different y satisfying \(\mathrm {\Phi }\) be at least \(c\in \mathbb {N}\), where c can succinctly be defined by a Presburger formula. Our results are cast in terms of what we call the monadically-guarded fragment of Presburger arithmetic with unary counting quantifiers, for which we develop a 2ExpSpace decision procedure.

Download conference paper PDF

References

  1. Apelt, H.: Axiomatische Untersuchungen über einige mit der Presburgerschen Arithmetik verwandte Systeme. Math. Log. Q. 12(1), 131–168 (1966)

    Google Scholar 

  2. Barvinok, A.I.: A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. Math. Oper. Res. 19(4), 769–779 (1994)

    Google Scholar 

  3. Berman, L.: The complexity of logical theories. Theor. Comput. Sci. 11(1), 71–77 (1980)

    Google Scholar 

  4. Habermehl, P., Kuske, D.: On Presburger arithmetic extended with modulo counting quantifiers. In: Proc. Foundations of Software Science and Computation Structures, FoSSaCS. Lect. Notes Comput. Sc., vol. 9034, pp. 375–389. Springer (2015)

    Google Scholar 

  5. Hague, M., Lin, A.W., Rümmer, P., Wu, Z.: Monadic decomposition in integer linear arithmetic. In: Proc. International Joint Conference on Automated Reasoning, IJCAR. Lect. Notes Comput. Sc., vol. 12166, pp. 122–140. Springer (2020)

    Google Scholar 

  6. Herre, H., Krynicki, M., Pinus, A., Väänänen, J.: The Härtig quantifier: A survey. J. Symb. Comput. 56(4), 1153–1183 (1991)

    Google Scholar 

  7. Kozen, D.: Theory of Computation. Texts in Computer Science, Springer (2006)

    Google Scholar 

  8. Oppen, D.C.: A \(2^{2^{2^{pn}}}\) upper bound on the complexity of Presburger arithmetic. J. Comput. Syst. Sci. 16(3), 323–332 (1978)

    Google Scholar 

  9. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In: Comptes Rendus du I congres de Mathematiciens des Pays Slaves, pp. 92–101. American Mathematical Society (1929)

    Google Scholar 

  10. Schweikardt, N.: Arithmetic, first-order logic, and counting quantifiers. ACM Trans. Comput. Log. 6(3), 634–671 (2005)

    Google Scholar 

  11. Veanes, M., Bjørner, N., Nachmanson, L., Bereg, S.: Monadic decomposition. J. ACM 64(2), 14:1–14:28 (2017)

    Google Scholar 

  12. Weispfenning, V.: The complexity of almost linear diophantine problems. J. Symb. Comput. 10(5), 395–404 (1990)

    Google Scholar 

  13. Woods, K.: Presburger arithmetic, rational generating functions, and quasi-polynomials. J. Symb. Log. 80(2), 433–449 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Centre for Discrete Mathematics and its Applications (DIMAP) & Department of Computer Science, University of Warwick, Coventry, UK

    Dmitry Chistikov

  2. Department of Computer Science, University of Oxford, Parks Rd, Oxford, OX1 3QD, UK

    Christoph Haase & Alessio Mansutti

Authors
  1. Dmitry Chistikov
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Christoph Haase
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Alessio Mansutti
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Alessio Mansutti .

Editor information

Editors and Affiliations

  1. Université Paris-Saclay, CNRS, ENS Paris-Saclay, Gif-sur-Yvette, France

    Prof. Patricia Bouyer

  2. Friedrich-Alexander-Universität Erlangen, Erlangen, Germany

    Lutz Schröder

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and Permissions

Copyright information

© 2022 The Author(s)

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Chistikov, D., Haase, C., Mansutti, A. (2022). Quantifier elimination for counting extensions of Presburger arithmetic. In: Bouyer, P., Schröder, L. (eds) Foundations of Software Science and Computation Structures. FoSSaCS 2022. Lecture Notes in Computer Science, vol 13242. Springer, Cham. https://doi.org/10.1007/978-3-030-99253-8_12

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-030-99253-8_12

  • Published: 29 March 2022

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99252-1

  • Online ISBN: 978-3-030-99253-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • The European Joint Conferences on Theory and Practice of Software.

    Published in cooperation with

    http://www.etaps.org/

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.