Skip to main content

Human-Centered Adaptive Assistance Systems for the Shop Floor

  • Chapter
  • First Online:
Human-Technology Interaction

Abstract

Most of today’s assistance systems for the shop floor do not consistently follow a human-centered design approach. An explicit modeling of concepts for instructions, users and adaptations is required when aiming for a holistic approach. Therefore, we first define a morphological box to capture design alternatives for adaptive functionalities. Afterwards, a reference architecture is presented, consisting of several building blocks that implement an adaptation loop to continuously adapt the provided assistance and the system behavior to the current user. A selection of algorithms to realize adaptive behavior concludes our contribution. Following a human-centered design approach, three exemplary scenarios for assistance on the shop floor demonstrate the application of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Business process modeling and notation in version 2, is a graphical modeling language which creates executable models, standardized by the Object Management Group (OMG) https://www.omg.org/spec/BPMN/2.0/About-BPMN

References

  1. Bläsing, D. & Bornewasser, M. (2021). Influence of increasing task complexity and use of informational assistance systems on mental workload. Brain Sciences, 11.

    Google Scholar 

  2. Büttner, S., Mucha, H., Funk, M., Kosch, T., Aehnelt, M., Robert, S., & Röcker, C. (2017). The design space of augmented and virtual reality applications for assistive environments in manufacturing: A visual approach. In Proceedings of the 10th International Conference on PErvasive technologies related to assistive environments.

    Google Scholar 

  3. Mark, B. G., Gualtieri, L., Rauch, E., Rojas, R., Buakum, D., & Matt, D. T. (2019). Analysis of user groups for assistance systems in Production 4.0. In 2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM).

    Google Scholar 

  4. Funk, M., Dingler, T., Cooper, J., & Schmidt, A. (2015). Stop helping me – I’m bored! Why assembly assistance needs to be adaptive. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the Symposium on Wearable Computers - UbiComp‘15. New York, USA.

    Google Scholar 

  5. Schmidt, A., Beigl, M., & Gellersen, H.-W. (1999). There is more to context than location. Computers & Graphics, 23, 893–901.

    Article  Google Scholar 

  6. Kosch, T., Abdelrahman, Y., Funk, M., & Schmidt, A. (2017). One size does not fit all: Challenges of providing interactive worker assistance in industrial settings. In Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers. ACM.

    Google Scholar 

  7. Apt, W., Schubert, M., & Wischmann, S. (2018). Digitale Assistenzsysteme: Perspektiven und Herausforderungen für den Einsatz in Industrie und Dienstleistungen. Institut für Innovation und Technik.

    Google Scholar 

  8. Kleineberg, T., Hinrichsen, S., Eichelberg, M., Busch, F., Brockmann, D., & Vierfuß, R. (2017). LEITFADEN: Einführung von Assistenzsystemen in der Montage. Springer.

    Google Scholar 

  9. Büttner, S., Sand, O., & Röcker, C. (2017). Exploring design opportunities for intelligent worker assistance: A new approach using projection-based AR and a novel hand-tracking algorithm (Vol. 10217). Springer.

    Google Scholar 

  10. Sochor, R., Kraus, L., Merkel, L., Braunreuther, S., & Reinhart, G. (2019). Approach to increase worker acceptance of cognitive assistance systems in manual assembly. In 52nd CIRP conference on manufacturing systems (Vol. 81, pp. 926–931). Elsevier.

    Google Scholar 

  11. Fischer, H., Senft, B., & Stahl, K. (2017). Akzeptierte Assistenzsysteme in der Arbeitswelt 4.0 durch systematisches Human-Centered Software Engineering. In Wissenschaftsforum Intelligente Technische Systeme (WInTeSys). Paderborn.

    Google Scholar 

  12. Streicher, A., & Smeddinck, J. D. (2016). Personalized and adaptive serious games. In R. Dörner, S. Göbel, M. Kickmeier-Rust, M. Masuch, & K. Zweig (Eds.), Entertainment computing and serious games (Vol. 9970, pp. 332–377). Springer.

    Chapter  Google Scholar 

  13. Burgos, D., Tattersall, C., & Koper, R. (2007). How to represent adaptation in e-learning with IMS learning design. Interactive Learning Environments, 15, 161–170.

    Article  Google Scholar 

  14. Oestreich, H., Wrede, S., & Wrede, B. (2020). Learning and performing assembly processes. In Proceedings of the 13th ACM International Conference on PErvasive technologies related to assistive environments. ACM.

    Google Scholar 

  15. Browne, D. P., Totterdell, P., & Norman, M. (Eds.). (1990). Adaptive user interfaces. Academic Press.

    Google Scholar 

  16. Holmes, W., Anastopoulou, S., Schaumburg, H., & Mavrikis, M. (2018). Technology-enhanced personalised learning: Untangling the evidence. Robert Bosch Stiftung.

    Google Scholar 

  17. Ras, E., Wild, F., Stahl, C., & Baudet, A. (2017). Bridging the skills gap of workers in Industry 4.0 by human performance augmentation tools. In Proceedings of the 10th International Conference on PErvasive technologies related to assistive environments. ACM.

    Google Scholar 

  18. Hodaie, Z., Haladjian, J., & Bruegge, B. (2018). TUMA: Towards an intelligent tutoring system for manual-procedural activities. In R. Nkambou, R. Azevedo, & J. Vassileva (Eds.), Intelligent tutoring systems (Vol. 10858, pp. 326–331). Springer.

    Chapter  Google Scholar 

  19. GCSM. (2013). Learnstruments in value creation and learning centered work place design. Universitätsverlag der TU Berlin.

    Google Scholar 

  20. Heinz, M., Büttner, S., & Röcker, C. (2020). Exploring users’ eye movements when using projection-based assembly assistive systems. In International conference on human-computer interaction. Springer.

    Google Scholar 

  21. Prinz, C., Kreimeier, D., & Kuhlenkötter, B. (2017). Implementation of a learning environment for an Industrie 4.0 assistance system to improve the overall equipment effectiveness. Procedia Manufacturing, 9, 159–166.

    Article  Google Scholar 

  22. Oestreich, H., Töniges, T., Wojtynek, M., & Wrede, S. (2019). Interactive learning of assembly processes using digital assistance. Procedia Manufacturing, 31, 14–19.

    Article  Google Scholar 

  23. Letmathe, P., Schweitzer, M., & Zielinski, M. (2012). How to learn new tasks: Shop floor performance effects of knowledge transfer and performance feedback. Journal of Operations Management, 30, 221–236.

    Article  Google Scholar 

  24. Wilschut, E. S., Könemann, R., Murphy, M. S., van Rhijn, G. J. W., & Bosch, T. (2019). Evaluating learning approaches for product assembly. In Proceedings of the 12th ACM International Conference on PErvasive technologies related to assistive environments – PETRA’19. ACM.

    Google Scholar 

  25. Baker, R. S. J., D'Mello, S. K., Rodrigo, M. M. T., & Graesser, A. C. (2010). Better to be frustrated than bored: The incidence, persistence, and impact of learners’ cognitive–affective states during interactions with three different computer-based learning environments. International Journal of Human-Computer Studies, 68, 223–241.

    Article  Google Scholar 

  26. Heinz, M., Büttner, S., & Röcker, C. (2019). Exploring training modes for industrial augmented reality learning. In Proceedings of the 12th ACM International Conference on PErvasive technologies related to assistive environments – PETRA’19. ACM.

    Google Scholar 

  27. Müller, B. C., Nguyen, T. D., Dang, Q.-V., Duc, B. M., Seliger, G., Krüger, J., & Kohl, H. (2016). Motion tracking applied in assembly for worker training in different locations. Procedia CIRP, 48, 460–465.

    Article  Google Scholar 

  28. Büttner, S., Prilla, M., & Röcker, C. (2020). Augmented reality training for industrial assembly work-are projection-based AR assistive systems an appropriate tool for assembly training? In Proceedings of the 2020 CHI conference on human factors in computing systems. ACM.

    Google Scholar 

  29. Hinrichsen, S., & Bornewasser, M. (2019). How to design assembly assistance systems. In W. Karwowski & T. Ahram (Eds.), Intelligent human systems integration 2019 (Vol. 903, pp. 286–292). Springer.

    Chapter  Google Scholar 

  30. Hold, P., Erol, S., Reisinger, G., & Sihn, W. (2017). Planning and evaluation of digital assistance systems. Procedia Manufacturing, 9, 143–150.

    Article  Google Scholar 

  31. Dostert, J. & Müller, R. (2020). Motivational assistance system design for industrial production: From motivation theories to design strategies. Cognition, Technology & Work.

    Google Scholar 

  32. Schulz, A. S., Schulz, F., Gouveia, R., & Korn, O. (2018). Branded gamification in technical education. In 2018 10th international conference on virtual worlds and games for serious applications (VS-Games). IEEE.

    Google Scholar 

  33. Josifovska, K., Yigitbas, E., & Engels, G. (2019). A digital twin-based multi-modal UI adaptation framework for assistance systems in Industry 4.0. In Human-computer interaction. Design practice in contemporary societies. HCII. Springer.

    Google Scholar 

  34. Rönick, K., Kremer, T., & Wakula, J. (2018). Evaluation of an adaptive assistance system to optimize physical stress in the assembly. In Congress of the International Ergonomics Association. IEA.

    Google Scholar 

  35. Petzoldt, C., Keiser, D., Beinke, T., & Freitag, M. (2020). Functionalities and implementation of future informational assistance systems for manual assembly. In Subject-oriented business process management. The Digital Workplace - Nucleus of Transformation.

    Google Scholar 

  36. Taoum, J., Raison, A., Bevacqua, E., & Querrec, R. (2018). An adaptive tutor to promote learners’ skills acquisition during procedural learning. In WeASeL 2018 - 1st international workshop eliciting adaptive sequences for learning (Vol. 1, pp. 12–17). HAL CCSD.

    Google Scholar 

  37. Korn, O. (2018). Autonomie beim Einsatz kontextbewusster Systeme: Der Weg zum Emotionsbewusstsein. In T. Breyer-Mayländer (Ed.), Das Streben nach Autonomie (pp. 203–214). Nomos Verlagsgesellschaft mbH & Co.

    Chapter  Google Scholar 

  38. Sauer, M. (1990). MTM-UAS, universelles Analysiersystem: eine programmierte Unterweisung. Dt. MTM-Vereinigung.

    Google Scholar 

  39. Nelles, J., Kuz, S., Mertens, A., & Schlick, C. M. (2016). Human-centered design of assistance systems for production planning and control: The role of the human in Industry 4.0. In 2016 IEEE International Conference on Industrial Technology (ICIT). IEEE.

    Google Scholar 

  40. Bächler, L., Bächler, A., Kölz, M., Hörz, T., & Heidenreich, T. (2015, 2015). Über die Entwicklung eines prozedural-interaktiven Assistenzsystems für leistungsgeminderte und-gewandelte Mitarbeiter in der manuellen Montage. Kognitive Systeme, 2015.

    Google Scholar 

  41. Aehnelt, M., & Bader, S. (2016). Providing and adapting information assistance for smart assembly stations. In Proceedings of SAI intelligent systems conference. Springer.

    Google Scholar 

  42. Bannat, A., Wallhoff, F., Rigoll, G., Friesdorf, F., Bubb, H., Stork, S., Müller, H. J., Schubö, A., Wiesbeck, M., Zäh, M. F., et al. (2008). Towards optimal worker assistance: A framework for adaptive selection and presentation of assembly instructions. In Proceedings of the 1st international workshop on cognition for technical systems, Cotesys. Springer.

    Google Scholar 

  43. Galaske, N., & Anderl, R. (2016). Approach for the development of an adaptive worker assistance system based on an individualized profile data model. In C. Schlick & S. Trzcieliński (Eds.), Advances in ergonomics of manufacturing: Managing the enterprise of the future (Vol. 490, pp. 543–556). Springer.

    Chapter  Google Scholar 

  44. Burggräf, P., Dannapfel, M., Adlon, T., Hahn, V., Riegauf, A., Casla, P., Marguglio, A., & Fernandez, I. (2020). Virtual asset representation for enabling adaptive assembly at the example of electric vehicle production. Academic Press.

    Google Scholar 

  45. Gellert, A., & Zamfirescu, C.-B. (2020). Using two-level context-based predictors for assembly assistance in smart factories. In International conference on computers communications and control. IEEE.

    Google Scholar 

  46. IBM. (2006). An architectural blueprint for autonomic computing. IBM White Paper.

    Google Scholar 

  47. Bertram, P., Birtel, M., Quint, F., & Ruskowski, M. (2018). Intelligent manual working station through assistive systems. IFAC-PapersOnLine, 51, 170–175.

    Article  Google Scholar 

  48. Rupp, S., & Müller, R. (2020). Worker assistance systems and assembly process maturity in the prototype and pre-series production. Procedia Manufacturing, 51, 1431–1438.

    Article  Google Scholar 

  49. ElKomy, M., Abdelrahman, Y., Funk, M., Dingler, T., Schmidt, A., & Abdennadher, S. (2017). ABBAS: An adaptive bio-sensors based assistive system. In Proceedings of the 2017 CHI conference extended abstracts on human factors in computing systems. ACM.

    Google Scholar 

  50. Stoessel, C., Wiesbeck, M., Stork, S., Zaeh, M. F., & Schuboe, A. (2008). Towards optimal worker assistance: Investigating cognitive processes in manual assembly. In Manufacturing systems and technologies for the new frontier (pp. 245–250). Springer.

    Chapter  Google Scholar 

  51. Kosch, T., Karolus, J., Ha, H., & Schmidt, A. (2019). Your skin resists: Exploring electrodermal activity as workload indicator during manual assembly. In Proceedings of the ACM SIGCHI symposium on engineering interactive computing systems. ACM.

    Google Scholar 

  52. Gollan, B., Haslgruebler, M., Ferscha, A., & Heftberger, J. (2018). Making sense: Experiences with multi-sensor fusion in industrial assistance systems. In PhyCS. ACM.

    Google Scholar 

  53. Gorecky, D., Worgan, S. F., & Meixner, G. (2011). COGNITO: A cognitive assistance and training system for manual tasks in industry. In Proceedings of the 29th annual European conference on cognitive ergonomics. IEEE.

    Google Scholar 

  54. Wolf, H., Herrmann, K., & Rothermel, K. (2009). Modeling dynamic context awareness for situated workflows. In OTM confederated international conferences: On the move to meaningful Internet systems. ACM.

    Google Scholar 

  55. Aehnelt, M., & Urban, B. (2015). The knowledge gap: Providing situation-aware information assistance on the shop floor. In International conference on HCI in business. HCI International.

    Google Scholar 

  56. Hollowell, J. C., Kollar, B., Vrbka, J., & Kovalova, E. (2019). Cognitive decision-making algorithms for sustainable manufacturing processes in Industry 4.0: Networked, smart, and responsive devices. Economics, Management and Financial Markets, 14, 9–15.

    Google Scholar 

  57. Aehnelt, M., & Bader, S. (2015). From information assistance to cognitive automation: A smart assembly use case. In International conference on agents and artificial intelligence. Springer.

    Google Scholar 

  58. Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of big data–evolution, challenges and research agenda. International Journal of Information Management, 48, 63–71.

    Article  Google Scholar 

  59. Oestreich, H., da Silva Bröker, Y., & Wrede, S. (2021). An adaptive workflow architecture for digital assistance systems. In Proceedings of the 14th ACM international conference on PErvasive technologies related to assistive environments. ACM.

    Google Scholar 

  60. Ullrich, C. (2016). Rules for adaptive learning and assistance on the shop floor. In 13th international conference on cognition and exploratory learning in digital age (pp. 261–268). IADIS Press.

    Google Scholar 

  61. Funk, M., Kosch, T., & Schmidt, A. (2016). Interactive worker assistance: Comparing the effects of in-situ projection, head-mounted displays, tablet, and paper instructions. In Proceedings of the 2016 ACM international joint conference on pervasive and ubiquitous computing. ACM.

    Google Scholar 

  62. Blattgerste, J., Strenge, B., Renner, P., Pfeiffer, T., & Essig, K. (2017). Comparing conventional and augmented reality instructions for manual assembly tasks. In Proceedings of the 10th international conference on pervasive technologies related to assistive environments. Springer.

    Google Scholar 

  63. Fraga-Lamas, P., Fernandez-Carames, T. M., Blanco-Novoa, O., & Vilar-Montesinos, M. A. (2018). A review on industrial augmented reality systems for the industry 4.0 shipyard. IEEE Access, 6, 13358–13375.

    Article  Google Scholar 

  64. Fite-Georgel, P. (2011). Is there a reality in industrial augmented reality? In 2011 10th IEEE international symposium on mixed and augmented reality. IEEE.

    Google Scholar 

  65. Kosch, T., Kettner, R., Funk, M., & Schmidt, A. (2016). Comparing tactile, auditory, and visual assembly error-feedback for workers with cognitive impairments. In Proceedings of the 18th international ACM SIGACCESS conference on computers and accessibility. ACM.

    Google Scholar 

  66. Günther, S., Kratz, S., Avrahami, D., & Mühlhäuser, M. (2018). Exploring audio, visual, and tactile cues for synchronous remote assistance. In Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference. ACM.

    Google Scholar 

  67. Wilson, C., & Scott, B. (2017). Adaptive systems in education: A review and conceptual unification. The International Journal of Information and Learning Technology, 34, 2–19.

    Article  Google Scholar 

  68. Graessler, I., & Poehler, A. (2017). Integration of a digital twin as human representation in a scheduling procedure of a cyber-physical production system. IEEE.

    Book  Google Scholar 

  69. Josifovska, K., Yigitbas, E., & Engels, G. (2019). Reference framework for digital twins within cyber-physical systems. In IEEE/ACM 5th International Workshop on Software Engineering for Smart Cyber-Physical Systems (SEsCPS) (Vol. 2019, pp. 25–31). IEEE.

    Google Scholar 

  70. Combemale, B., Kienzle, J. A., Mussbacher, G., Ali, H., Amyot, D., Bagherzadeh, M., Batot, E., Bencomo, N., Benni, B., Bruel, J.-M., Cabot, J., Cheng, B. H. C., Collet, P., Engels, G., Heinrich, R., Jezequel, J.-M., Koziolek, A., Mosser, S., Reussner, R., et al. (2020). A Hitchhiker’s guide to model-driven engineering for data-centric systems. IEEE Software, 2020, 0.

    Google Scholar 

  71. Berisha-Gawlowski, A., Caruso, C., & Harteis, C. (2020). The concept of a digital twin and its potential for learning organizations. In D. Ifenthaler, S. Hofhues, M. Egloffstein, & C. Helbig (Eds.), Digital transformation of learning organizations (pp. 95–114). Springer Nature.

    Google Scholar 

  72. Schwarz, J., Fuchs, S., & Flemisch, F. (2014). Towards a more holistic view on user state assessment in adaptive human-computer interaction. In 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE.

    Google Scholar 

  73. Funk, M., Lischke, L., Mayer, S., Shirazi, A. S., & Schmidt, A. (2018). Teach me how! Interactive assembly instructions using demonstration and in-situ projection. Assistive Augmentation, 2018, 49–73.

    Article  Google Scholar 

  74. Homem de Mello, L. S., & Sanderson, A. C. (1990). AND/OR graph representation of assembly plans. IEEE Transactions on Robotics and Automation, 6, 188–199.

    Article  Google Scholar 

  75. Moore, K. E., Güngör, A., & Gupta, S. M. (2001). Petri net approach to disassembly process planning for products with complex AND/OR precedence relationships. European Journal of Operational Research, 135, 428–449.

    Article  MATH  Google Scholar 

  76. Bader, S., & Aehnelt, M. (2014). Tracking assembly processes and providing assistance in smart factories. In ICAART (pp. 161–168). SCITEPRESS - Science and Technology Publications.

    Google Scholar 

  77. Agrawala, M., Phan, D., Heiser, J., Haymaker, J., Klingner, J., Hanrahan, P., & Tversky, B. (2003). Designing effective step-by-step assembly instructions. ACM Transactions on Graphics, 22, 828–837.

    Article  Google Scholar 

  78. Apoki, U. C., Al-Chalabi, H. K. M., & Crisan, G. C. (2020). From digital learning resources to adaptive learning objects: An overview. In D. Simian & L. F. Stoica (Eds.), Modelling and development of intelligent systems (Vol. 1126, pp. 18–32). Springer.

    Chapter  Google Scholar 

  79. Haase, T., Weisenburger, N., Termath, W., Frosch, U., Bergmann, D., & Dick, M. (2014). The didactical design of virtual reality based learning environments for maintenance technicians. In Virtual, augmented and mixed reality. Applications of virtual and augmented reality. VAMR 2014. Lecture Notes in Computer Science (Vol. 8526). Springer.

    Google Scholar 

  80. Tsalgatidou, A., & Loucopoulos, P. (1991). Rule-based behaviour modelling: Specification and validation of information systems dynamics. Information and Software Technology, 33, 425–432.

    Article  Google Scholar 

  81. Sehr, P., Moriz, N., Heinz, M., & Trsek, H. (2021). Model-based approach for adaptive assembly assistance. In 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE.

    Google Scholar 

  82. Wagner, J., Kim, J., & André, E. (2005). From physiological signals to emotions: Implementing and comparing selected methods for feature extraction and classification. In 2005 IEEE international conference on multimedia and expo. IEEE.

    Google Scholar 

  83. Healey, J. A., & Picard, R. W. (2005). Detecting stress during real-world driving tasks using physiological sensors. IEEE Transactions on Intelligent Transportation Systems, 6, 156–166.

    Article  Google Scholar 

  84. Jo, J., Lee, S. J., Park, K. R., Kim, I.-J., & Kim, J. (2014). Detecting driver drowsiness using feature-level fusion and user-specific classification. Expert Systems with Applications, 41, 1139–1152.

    Article  Google Scholar 

  85. Vodenčarević, A., Büning, H. K., Niggemann, O., & Maier, A. (2011). Using behavior models for anomaly detection in hybrid systems. In 2011 XXIII International Symposium on Information, Communication and Automation Technologies. IEEE.

    Google Scholar 

  86. Gellert, A., Precup, S.-A., Pirvu, B.-C., & Zamfirescu, C.-B. (2020). Prediction-based assembly assistance system. In 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE.

    Google Scholar 

  87. Lieto, A., Bhatt, M., Oltramari, A., & Vernon, D. (2018). The role of cognitive architectures in general artificial intelligence. Elsevier.

    Book  Google Scholar 

  88. Ye, P., Wang, T., & Wang, F.-Y. (2018). A survey of cognitive architectures in the past 20 years. IEEE Transactions on Cybernetics, 48, 3280–3290.

    Article  Google Scholar 

  89. Kölz, M., Jordon, D., Kurtz, P., & Hörz, T. (2015). Adaptive assistance to support and promote performance-impaired people in manual assembly processes. In Proceedings of the 17th International ACM SIGACCESS Conference on Computers & Accessibility. ACM.

    Google Scholar 

  90. Varadinek, B., Indenhuck, M., & Surowiecki, E. (2018). Rechtliche Anforderungen an den Datenschutz bei adaptiven Arbeitsassistenzsystemen. Bundesanstalt für Arbeitsschutz und Arbeitsmedizin.

    Google Scholar 

Download references

Acknowledgments

This work was supported through the research program “Design of Flexible Work Environments - Human-Centric Use of Cyber-Physical Systems in Industry 4.0”, by the North Rhine-Westphalian funding scheme “Forschungskolleg” and the Ministry of Economic Affairs, Innovation, Digitalisation and Energy North-Rhine Westphalia (MWIDE) within the funding initiative it’s OWL managed by the project management agency Jülich (PTJ) under grant agreement number 005-2011-0241. The work was further supported through the research project „Technology-enabled inclusion through human-centred systems analysis and assistance in industry“, by the German Federal Ministry of Education and Research (BMBF) within the funding scheme „FHprofUnt“ managed by the project management agency VDI Technologiezentrum under grand number 13FH110PX6. The avatar graphics used for the personas in Sect. 4.3 were designed by macrovector_official/Freepik.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Oestreich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oestreich, H., Heinz-Jakobs, M., Sehr, P., Wrede, S. (2023). Human-Centered Adaptive Assistance Systems for the Shop Floor. In: Röcker, C., Büttner, S. (eds) Human-Technology Interaction. Springer, Cham. https://doi.org/10.1007/978-3-030-99235-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99235-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99234-7

  • Online ISBN: 978-3-030-99235-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics