Skip to main content

Which Factors Influence Laboratory Employees’ Acceptance of Laboratory 4.0 Systems?

  • Chapter
  • First Online:
Human-Technology Interaction

Abstract

Laboratory 4.0 systems provide a central ecosystem in the lab that connects people, processes, devices, and environmental data, comparable to the concept of smart home. Laboratory 4.0 enables laboratory employees to organize their lab and allows users to combine products from different vendors to create their personal laboratory infrastructure. Contrary to the field of smart home, to our knowledge, there is no study investigating the laboratory employees’ acceptance and intention to use the technology of laboratory 4.0. Therefore, this study aims to examine the factors which influence the acceptance of laboratory 4.0 of potential users by applying the technology acceptance model (TAM) adopted from smart home. Partial least squares—structural equation modeling (PLSSEM) was used to describe the TAM and extended by trust and perceived risk, which pose potentially important factors for users in the sensitive field of laboratory data. The results revealed that users’ attitude toward laboratory 4.0 is heavily affected by users’ perceived usefulness which, in turn, impacts the intention to use laboratory 4.0. By determining the total effects, perceived usefulness is the most important factor influencing attitude toward and intention to use laboratory 4.0. In comparison to smart home, attitude toward use and perceived usefulness seem especially important in the context of laboratory 4.0 and appear to play a decisive role regarding the establishment of this infrastructure. The current study can serve as a foundation for future research on improving laboratory 4.0 systems by considering the relevance of influencing factors on user acceptance.

Supported by Fraunhofer Institute for Manufacturing Engineering and Automation IPA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Korzun, D. G., Kashevnik, A. M., Balandin, S. I., & Smirnov, A. V. (2015). The smart-m3 platform: Experience of smart space application development for internet of things. In Internet of things, smart spaces, and next generation networks and systems (pp. 56–67). Springer.

    Chapter  Google Scholar 

  2. Vermesan, O., Friess, P., et al. (2014). Internet of things-from research and innovation to market deployment (Vol. 29). River Publishers.

    Google Scholar 

  3. Atzori, L., Iera, A., & Morabito, G. (2017). Understanding the internet of things: Definition, potentials, and societal role of a fast-evolving paradigm. Ad Hoc Networks, 56, 122–140.

    Article  Google Scholar 

  4. Balta-Ozkan, N., Boteler, B., & Amerighi, O. (2014). European smart home market development: Public views on technical and economic aspects across the United Kingdom, Germany and Italy. Energy Research & Social Science, 3, 65–77.

    Article  Google Scholar 

  5. Analytica, Messe München. (2018). Towards the laboratory of the future. Retrieved from https://www.analytica.de/en/press/trend-reports/laboratory-of-the-future/

  6. Trendreport 2019 Analysen-, Bio- und Labortechnik: Märkte, Entwicklungen, Potenziale. SPECTARIS. (2019). Retrieved from https://www.spectaris.de/fileadmin/Content/Analysen-Bio-und-Labortechnik/Zahlen-Fakten-Publikationen/Trendreport ABL 2019.pdf

  7. NEMO-Projekt smartLab Innovationsnetzwerk. EurA AG. (2016). Retrieved from http://www.smartlab-netzwerk.de/netzwerk.html

  8. SPECTARIS. (2021). Lads – Laboratory Agnostic Device Standard. Ein neuer Standard für das smarte Labor. Retrieved from https://www.spectaris.de/analysen-bio-undlabortechnik/vernetzte-laborgeraete/

  9. Park, E., Cho, Y., Han, J., & Kwon, S. J. (2017). Comprehensive approaches to user acceptance of internet of things in a smart home environment. IEEE Internet of Things Journal, 4(6), 2342–2350.

    Article  Google Scholar 

  10. Shuhaiber, A., & Mashal, I. (2019). Understanding users’ acceptance of smart homes. Technology in Society, 58, 101110.

    Article  Google Scholar 

  11. Global Laboratory Automation Market Report and Forecast 2021-2026. Retrieved from https://www.expertmarketresearch.com/reports/laboratory-automation-market, publisher=Expert Market Research, year=2021

  12. Grand View Research. (2021, April). Laboratory informatics market size, share trends analysis report by product (LIMS, ELN, SDMS, LES, EDC CDMS, CDS, ECM), by delivery mode (cloud-based, on-premise), by component, by end-use, by region, and segment forecasts, 2021–2028. Retrieved from https://www.grandviewresearch.com/industry-analysis/laboratoryinformatics-market

  13. Markets and Markets Research. (2019). Laboratory informatics market. Retrieved from https://www.marketsandmarkets.com/Market-Reports/lab-informatic-market203037633.html

  14. Han, Y., Makarova, E., Ringel, M., & Telpis, V. (2019, January). Digitization, automation, and online testing: The future of pharma quality control. McKinsey & Company. Retrieved from https://www.mckinsey.com/industries/pharmaceuticals-and-medicalproducts/our-insights/digitization-automation-and-online-testing-the-future-ofpharma-quality-control

  15. Laboratory 4.0: Who needs it, and to what extent? - Smart Lab. LABVOLUTION (2017, January). Retrieved from https://www.labvolution.de/en/news/article/news-details 3712.xhtml

  16. Leitfaden für das Labor der Zukunft. PTC (2020). Retrieved from https://www.ptc.com//media/Files/PDFs/IoT/wp-leitfaden-fur-das-labor-der-zukunft.pdf

  17. Gauglitz, G. (2018). Lab 4.0: SiLA or OPC UA. Springer.

    Google Scholar 

  18. Mayer, M., & Baeumner, A. J. (2018). ABC spotlight on analytics 4.0. Springer.

    Book  Google Scholar 

  19. Frahm, M., Freundel, M., & Zölfl, R. (2021, February). Qualitative Studie über Digitalisierungsstand von Life-Science Laboren und AR Potenziale - Fraunhofer IPA. Fraunhofer. Retrieved from https://www.ipa.fraunhofer.de/de/Publikationen/studien/digitalisierungsstandvon-life-science-laboren.html

  20. Labor 4.0 - smart in die Zukunft. Bimos. (2017). Retrieved from https://www.bimos.com/B/dede/news2/2885/labor-40—smart-in-die-zukunft

  21. Coughlan, T., Brown, M., Mortier, R., Houghton, R. J., Goulden, M., & Lawson, G. (2012). Exploring acceptance and consequences of the internet of things in the home. In 2012 IEEE international conference on green computing and communications (pp. 148–155). IEEE.

    Chapter  Google Scholar 

  22. Balta-Ozkan, N., Amerighi, O., & Boteler, B. (2014). A comparison of consumer perceptions towards smart homes in the UK, Germany and Italy: Reflections for policy and future research. Technology Analysis & Strategic Management, 26(10), 1176–1195.

    Article  Google Scholar 

  23. Ahn, M., Kang, J., & Hustvedt, G. (2016). A model of sustainable household technology acceptance. International Journal of Consumer Studies, 40(1), 83–91.

    Article  Google Scholar 

  24. Kim, S., & Yoon, J. (2016). An exploratory study on consumer’s needs on smart home in Korea. In International conference of design, user experience, and usability (pp. 337–345). Springer.

    Google Scholar 

  25. Kim, Y., Park, Y., & Choi, J. (2017). A study on the adoption of IOT smart home service: Using value-based adoption model. Total Quality Management & Business Excellence, 28(9–10), 1149–1165.

    Article  Google Scholar 

  26. Yang, H., Lee, H., & Zo, H. (2017). User acceptance of smart home services: An extension of the theory of planned behavior. Industrial Management & Data Systems, 117, 68–89.

    Article  Google Scholar 

  27. Park, E., Kim, S., Kim, Y., & Kwon, S. J. (2018). Smart home services as the next mainstream of the ICT industry: Determinants of the adoption of smart home services. Universal Access in the Information Society, 17(1), 175–190.

    Article  Google Scholar 

  28. Hong, A., Nam, C., & Kim, S. (2020). What will be the possible barriers to consumers’ adoption of smart home services? Telecommunications Policy, 44(2), 101867.

    Article  Google Scholar 

  29. Jung, T. W., Yoon, S. Y., Nam, Y. S., Seong, D. I., Yoon, Y. J., Lee, M. H., Song, S. K., & Ha, K. S. (2020). Developing evaluation criteria for enterprise UX. The Journal of the Korea Contents Association, 20(4), 99–110.

    Google Scholar 

  30. Six, J. M. (2017, Jan). The differences between Enterprise and consumer UX design. UXmatters. Retrieved from https://www.uxmatters.com/mt/archives/2017/01/thedifferences-between-enterprise-and-consumer-ux-design.php

  31. Brandt, H. (2020). Exploratorische Faktorenanalyse. In Testtheorie und Fragebogenkonstruktion (pp. 575–614). Springer.

    Chapter  Google Scholar 

  32. Dziuban, C. D., & Shirkey, E. C. (1974). When is a correlation matrix appropriate for factor analysis? Some decision rules. Psychological Bulletin, 81(6), 358–361.

    Article  Google Scholar 

  33. Weiber, R., & Mühlhaus, D. (2014). Strukturgleichungsmodellierung: Eine anwendungsorientierte Einführung in die Kausalanalyse mit Hilfe von AMOS, SmartPLS und SPSS. Springer.

    Book  Google Scholar 

  34. Tobias, R. D., et al. (1995). An introduction to partial least squares regression. In Proceedings of the twentieth annual SAS users group international conference (Vol. 20). SAS Institute Inc Cary.

    Google Scholar 

  35. Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. In New challenges to international marketing (p. 282). Emerald Group.

    Google Scholar 

  36. Garson, G. D. (2016). Partial least squares. Regression and structural equation models. Statistical Publishing Associates.

    Google Scholar 

  37. Secka, M. (2015). Einfluss von Kommunikationsmaßnahmen mit CSR-Bezug auf die Einstellung zur Marke: Entwicklung und Uberprüfung eines konzeptionellen Modells. Peter Lang International Academic Publishers.

    Book  Google Scholar 

  38. Hair, J. F., Jr., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2016). A primer on partial least squares structural equation modeling (PLS-SEM). Sage.

    MATH  Google Scholar 

  39. Joshi, A., Kale, S., Chandel, S., & Pal, D. K. (2015). Likert scale: Explored and explained. Current Journal of Applied Science and Technology, 2015, 396–403.

    Google Scholar 

  40. Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Richter, N. F., & Hauff, S. (2017). Partial Least Squares Strukturgleichungsmodellierung: Eine anwendungsorientierte Einführung. Vahlen.

    Book  Google Scholar 

  41. Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24.

    Article  Google Scholar 

  42. Fishbein, M. (1979). A theory of reasoned action: Some applications and implications. Nebraska Symposium on Motivation, 27, 65–116.

    Google Scholar 

  43. Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In J. Kuhl & J. Beckmann (Eds.), Action control from cognition to behavior (Vol. 50). Springer.

    Google Scholar 

  44. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27, 425–478.

    Article  Google Scholar 

  45. Dwivedi, M. (2015). The unified theory of acceptance and use of technology (UTAUT). Journal of Enterprise Information Management, 28(3), 443–488.

    Article  Google Scholar 

  46. Nistor, N., & Heymann, J. O. (2010). Reconsidering the role of attitude in the TAM: An answer to Teo (2009a). British Journal of Educational Technology, 41(6), E142–E145.

    Article  Google Scholar 

  47. Hsiao, C. H., & Yang, C. (2011). The intellectual development of the technology acceptance model: A co-citation analysis. International Journal of Information Management, 31(2), 128–136.

    Article  Google Scholar 

  48. King, W. R., & He, J. (2006). A meta-analysis of the technology acceptance model. Information & management, 43(6), 740–755.

    Article  Google Scholar 

  49. Marangunc, N., & Granic, A. (2015). Technology acceptance model: A literature review from 1986 to 2013. Universal Access in the Information Society, 14(1), 81–95.

    Article  Google Scholar 

  50. Egea, J. M. O., & Gonza’lez, M.V.R. (2011). Explaining physicians’ acceptance of EHCR systems: An extension of tam with trust and risk factors. Computers in Human Behavior, 27(1), 319–332.

    Article  Google Scholar 

  51. Gao, L., & Bai, X. (2014). A unified perspective on the factors influencing consumer acceptance of internet of things technology. Asia Pacific Journal of Marketing and Logistics.

    Google Scholar 

  52. Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and tam in online shopping: An integrated model. MIS Quarterly, 27, 51–90.

    Article  Google Scholar 

  53. Pavlou, P. A. (2003). Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model. International Journal of Electronic Commerce, 7(3), 101–134.

    Article  Google Scholar 

  54. Xie, Q., Song, W., Peng, X., & Shabbir, M. (2017). Predictors for e-government adoption: Integrating TAM, TPB, trust and perceived risk. The Electronic Library, 35(1), 2–20.

    Article  Google Scholar 

  55. Luor, T. T., Lu, H. P., Yu, H., & Lu, Y. (2015). Exploring the critical quality attributes and models of smart homes. Maturitas, 82(4), 377–386.

    Article  Google Scholar 

  56. DIN EN ISO/IEC 92419:2020-01. (2020). Grundsätze der ergonomischen Gestaltung assistiver Systeme. Beuth.

    Google Scholar 

  57. DIN EN ISO/IEC 17025:2017. (2018). Allgemeine Anforderungen an die Kompetenz von Prüf- und Kalibrierlaboratorien. Beuth.

    Google Scholar 

  58. Shuhaiber, A. (2016). Factors influencing consumer trust in mobile payments in the United Arab Emirates. Springer.

    Google Scholar 

  59. Ng, E. S., & Johnson, J. M. (2015). Millennials: Who are they, how are they different, and why should we care? In The multi-generational and aging workforce. Edward Elgar.

    Google Scholar 

  60. Prensky, M. (2001). Digital natives, digital immigrants part 2: Do they really think differently? On the Horizon, 9, 1–6.

    Google Scholar 

  61. Lippi, G. (2009). Governance of preanalytical variability: Travelling the right path to the bright side of the moon? Clinica Chimica Acta, 404(1), 32–36.

    Article  Google Scholar 

  62. Carter, L., & Weerakkody, V. (2008). E-government adoption: A cultural comparison. Information systems Frontiers, 10(4), 473–482.

    Article  Google Scholar 

Download references

Acknowledgments

Thank you to Andrea Siegberg and her C9 Information management team (Fraunhofer Cooperation) for assisting with the questionnaire. Special thanks to Ms. Sabine Lauderbach for her knowledge of statistics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Polzer .

Editor information

Editors and Affiliations

Appendices

Appendices

12.1.1 Appendix 1: Questionnaire Items Used in the Survey

A table with 2 columns of construct and description has multiple rows. The factors listed in the table include perceived usefulness, perceived ease of use, attitude toward the lab, intention to use, trust, and perceived risk.

12.1.2 Appendix 2: Laboratory 4.0 Model

A flow diagram of the laboratory 4.0 model connects perceived risk with trust, attitude toward lab 4.0, intention to use, ease of use, and usefulness flows to attitude towards lab 4.0.

12.1.3 Appendix 3: Discriminant Validity: Fornell-Larcker Criterion

A table of the discriminant validity of the Fornell Larcker criterion with 6 rows and columns. The column and row headers are attitude, ease of use, intention, risk, trust, and usefulness.

12.1.4 Appendix 4: Discriminant Validity: Outer Loadings/Cross-Loadings

A table of the discriminant validity of outer loading with 6 columns and 20 rows. The attitude, ease of use, intention, risk, trust, and usefulness.

12.1.5 Appendix 5: Collinearity Statistics (VIF)

A table of the collinearity statistics with 6 columns and 6 rows. The column and row headers are attitude, ease of use, intention, risk, trust, and usefulness.

12.1.6 Appendix 6: Influence Paths and Hypotheses Results

A table of the influence paths and hypotheses results with 4 columns and 8 rows. The column headers are the original sample, t statistics, p values, and results. The row has a hypothesis path of H 1 to H 8.

12.1.7 Appendix 7: Total Effects

A table of the total effects with 6 columns and 6 rows. The column and row headers are attitude, ease of use, intention, risk, trust, and usefulness.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Polzer, S., Frahm, M., Freundel, M., Nebe, K. (2023). Which Factors Influence Laboratory Employees’ Acceptance of Laboratory 4.0 Systems?. In: Röcker, C., Büttner, S. (eds) Human-Technology Interaction. Springer, Cham. https://doi.org/10.1007/978-3-030-99235-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99235-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99234-7

  • Online ISBN: 978-3-030-99235-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics