Skip to main content

Human-Technology Interaction in the Context of Industry 4.0: Current Trends and Challenges

  • Chapter
  • First Online:
Human-Technology Interaction

Abstract

The industrial landscape changes at a tremendous pace. With new industrial technologies as well as new ways of interacting with technical systems, the work of humans in industry is transformed. This article should outline the current development of human-technology interaction in the context of Industry 4.0. It outlines the recent technical developments toward Industry 4.0 and the technical and societal trends that play a role for the new industrial revolution. Finally, it derives research trends and challenges and gives an outline of the research topics addressed in this collection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bundesministerium für Bildung und Forschung: Zukunft der Arbeit. (2021). Innovationen für die Arbeit von morgen [German]. Accessed December 01, 2021, from https://www.bmbf.de/upload_filestore/pub/Zukunft_der_Arbeit.pdf

  2. President’s Council of Advisors on Science and Technology: Accelerating U.S. Advanced Manufacturing: Report to the President. (2014). Accessed January 12, 2021, from https://www.manufacturingusa.com/sites/prod/files/amp20_report_final.pdf

  3. Plattform Industrie 4.0: Plattform Industrie 4.0 & Alliance Industrie du Futur. (2018). Common list of scenarios. Accessed January 12, 2021, from https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/plattform-i40-und-industrie-dufutur-scenarios.pdf?__blob=publicationFile&v=5

  4. Dais, S. (2017). Industrie 4.0 – Anstoß, Vision, Vorgehen [German]. In B. Vogel-Heuser, T. Bauernhansl, & M. ten Hompel (Eds.), Handbuch Industrie 4.0 Bd. 4: Allgemeine Grundlagen (pp. 261–277). Springer.

    Chapter  Google Scholar 

  5. Kagermann, H., Wahlster, W., & Helbig, J. (2013). Umsetzungsempfehlungen für das Zukunftsprojekt Industrie 4.0–Abschlussbericht des Arbeitskreises Industrie 4.0.

    Google Scholar 

  6. McCloskey, D. N. (1981). The industrial revolution. The economic history of Britain since 1700.

    Google Scholar 

  7. Friedmann, G. (1936). La crise du progrès. Esquisse d'histoire des idées 1895–1935 [French].

    Google Scholar 

  8. Schoenherr, E. (2018). The digital revolution. Accessed from https://web.archive.org/web/20180220162425, http://history.sandiego.edu:80/gen/recording/digital.html

  9. Kagermann, H., Winter, J. (2018). Die zweite Welle der Digitalisierung. Deutschlands Chance. Accessed February 23, 2022, from https://www.plattform-lernende-systeme.de/reden-und-beitraege-newsreader/die-zweite-welle-der-digitalisierung-deutschlands-chance.html

  10. Geissbauer, R., Vedso, J., & Schrauf, S. (2016). Industry 4.0: Building the digital enterprise. Accessed February 23, 2022, from https://www.pwc.com/gx/en/industries/industries-4.0/landing-page/industry-4.0-building-your-digital-enterprise-april-2016.pdf

  11. Fellmann, M., Robert, S., Büttner, S., Mucha, H., & Röcker, C. (2017, August). Towards a framework for assistance systems to support work processes in smart factories. In International cross-domain conference for machine learning and knowledge extraction (pp. 59–68). Springer.

    Google Scholar 

  12. Büttner, S., Prilla, M., & Röcker, C. (2020, April). Augmented reality training for industrial assembly work-are projection-based AR assistive systems an appropriate tool for assembly training?. In Proceedings of the 2020 CHI conference on human factors in computing systems (pp. 1–12).

    Google Scholar 

  13. Heinz, M., Büttner, S., & Röcker, C. (2019, June). Exploring training modes for industrial augmented reality learning. In Proceedings of the 12th ACM international conference on PErvasive technologies related to assistive environments (pp. 398–401).

    Google Scholar 

  14. Büttner, S., Funk, M., Sand, O., & Röcker, C. (2016, June). Using head-mounted displays and in-situ projection for assistive systems: A comparison. In Proceedings of the 9th ACM international conference on pervasive technologies related to assistive environments (pp. 1–8).

    Google Scholar 

  15. Heinz, M., Büttner, S., Jenderny, S., & Röcker, C. (2021). Dynamic task allocation based on individual abilities-experiences from developing and operating an inclusive assembly line for workers with and without disabilities. Proceedings of the ACM on Human-Computer Interaction, 5, 1–19.

    Article  Google Scholar 

  16. Sand, O., Büttner, S., Paelke, V., & Röcker, C. (2016, July). Smart assembly–projection-based augmented reality for supporting assembly workers. In International conference on virtual, augmented and mixed reality (pp. 643–652). Springer.

    Google Scholar 

  17. Adcock, M., & Gunn, C. (2015). Using projected light for mobile remote guidance. Computer Supported Cooperative Work (CSCW), 24(6), 591–611.

    Article  Google Scholar 

  18. Krupitzer, C., Müller, S., Lesch, V., Züfle, M., Edinger, J., Lemken, A., Schäfer, D., Kounev, S., & Becker, C. (2020). A survey on human machine interaction in industry 4.0. arXiv preprint arXiv:2002.01025.

    Google Scholar 

  19. Behlen, M., Büttner, S., Schmidt, S., Pyritz, S., & Röcker, C. (2016). User study on multitouch in the industrial environment.

    Google Scholar 

  20. Gorecky, D., Schmitt, M., Loskyll, M., & Zühlke, D. (2014, July). Human-machine-interaction in the Industry 4.0 era. In 2014 12th IEEE international conference on industrial informatics (INDIN) (pp. 289–294). IEEE.

    Google Scholar 

  21. Jain, J., Lund, A., & Wixon, D. (2011). The future of natural user interfaces. In CHI’11 extended abstracts on human factors in computing systems (pp. 211–214).

    Google Scholar 

  22. Hofmeester, K., Wixon, D. (2010). Using metaphors to create a natural user interface for Microsoft Surface. In CHI’10 extended abstracts on human factors in computing systems (pp. 4629–4644).

    Google Scholar 

  23. Preim, B., & Dachselt, R. (2015). Interaktive Systeme: Band 2: User interface engineering, 3D-interaktion. In Natural user interfaces [German]. Springer.

    Google Scholar 

  24. Roda-Sanchez, L., Olivares, T., Garrido-Hidalgo, C., & Fernández-Caballero, A. (2019, June). Gesture control wearables for human-machine interaction in Industry 4.0. In International work-conference on the interplay between natural and artificial computation (pp. 99–108). Springer.

    Google Scholar 

  25. Sadik, A. R., Urban, B., & Adel, O. (2017, February). Using hand gestures to interact with an industrial robot in a cooperative flexible manufacturing scenario. In Proceedings of the 3rd International Conference on Mechatronics and Robotics Engineering (pp. 11–16).

    Google Scholar 

  26. Chaudhary, A., Raheja, J. L., Das, K., & Raheja, S. (2013). Intelligent approaches to interact with machines using hand gesture recognition in natural way: A survey. arXiv preprint arXiv:1303.2292.

    Google Scholar 

  27. Bhavsar, P., Srinivasan, B., & Srinivasan, R. (2017). Quantifying situation awareness of control room operators using eye-gaze behavior. Computers & Chemical Engineering, 106, 191–201.

    Article  Google Scholar 

  28. Fedosov, Y. & Katridi, A. (2021, May). Concept of implementing computer voice control for CNC machines using natural language processing. In 2021 29th Conference of Open Innovations Association (FRUCT) (pp. 125–131). IEEE.

    Google Scholar 

  29. Janíček, M., Ružarovský, R., Velíšek, K., & Holubek, R. (2021, February). Analysis of voice control of a collaborative robot. Journal of Physics: Conference Series, 1781(1), 012025.

    Google Scholar 

  30. Rogowski, A. (2012). Industrially oriented voice control system. Robotics and Computer-Integrated Manufacturing, 28(3), 303–315.

    Article  Google Scholar 

  31. Bartholomew, J. C., & Miller, G. E. (1988, November). Voice control for noisy industrial environments. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 1509–1510). IEEE

    Google Scholar 

  32. Schmidt, A. (2000). Implicit human computer interaction through context. Personal Technologies, 4(2), 191–199.

    Article  Google Scholar 

  33. Heinz, M., Büttner, S., Wegerich, M., Marek, F., & Röcker, C. (2018, July). A multi-level localization system for intelligent user interfaces. In International conference on distributed, ambient, and pervasive interactions (pp. 38–47). Springer.

    Google Scholar 

  34. Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE Transactions on Information and Systems, 77(12), 1321–1329.

    Google Scholar 

  35. Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators & Virtual Environments, 6(4), 355–385.

    Article  Google Scholar 

  36. Tan, C. T. & Soh, D. (2010). Augmented reality games: A review. Proceedings of Gameon-Arabia, Eurosis.

    Google Scholar 

  37. Raska, K. & Richter, T. (2017). Influence of augmented reality on purchase intention: The IKEA case.

    Google Scholar 

  38. Rese, A., Baier, D., Geyer-Schulz, A., & Schreiber, S. (2017). How augmented reality apps are accepted by consumers: A comparative analysis using scales and opinions. Technological Forecasting and Social Change, 124, 306–319.

    Article  Google Scholar 

  39. Tatwany, L., & Ouertani, H. C. (2017). A review on using augmented reality in text translation. In 2017 6th International Conference on Information and Communication Technology and Accessibility (ICTA). IEEE.

    Google Scholar 

  40. Berg, L. P., & Vance, J. M. (2017). Industry use of virtual reality in product design and manufacturing: A survey. Virtual Reality, 21(1), 1–17.

    Article  Google Scholar 

  41. Sutherland, I. (1965). The ultimate display.

    Google Scholar 

  42. Wohlgenannt, I., Simons, A., & Stieglitz, S. (2020). Virtual reality. Business & Information Systems Engineering, 62(5), 455–461.

    Article  Google Scholar 

  43. Büttner, S., Mucha, H., Funk, M., Kosch, T., Aehnelt, M., Robert, S., & Röcker, C. (2017, June). The design space of augmented and virtual reality applications for assistive environments in manufacturing: A visual approach. In Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments (pp. 433–440).

    Google Scholar 

  44. Caudell, T., & Mizell, D. (1992, January). Augmented reality: An application of heads-up display technology to manual manufacturing processes. In Hawaii international conference on system sciences (Vol. 2). ACM SIGCHI Bulletin.

    Google Scholar 

  45. Boud, A. C., Haniff, D. J., Baber, C., & Steiner, S. J. (1999, July). Virtual reality and augmented reality as a training tool for assembly tasks. In 1999 IEEE International Conference on Information Visualization (Cat. No. PR00210) (pp. 32–36). IEEE.

    Google Scholar 

  46. Tang, A., Owen, C., Biocca, F., & Mou, W. (2003, April). Comparative effectiveness of augmented reality in object assembly. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 73–80).

    Google Scholar 

  47. Schwerdtfeger, B. & Klinker, G. (2008, September). Supporting order picking with augmented reality. In 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality (pp. 91–94). IEEE.

    Google Scholar 

  48. Günthner, W. A., Blomeyer, N., Reif, R., & Schedlbauer, M. (2009). Pick-by-vision: Augmented reality unterstützte Kommissionierung.

    Google Scholar 

  49. Funk, M., Shirazi, A. S., Mayer, S., Lischke, L., & Schmidt, A. (2015, September). Pick from here! An interactive mobile cart using in-situ projection for order picking. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (pp. 601–609).

    Google Scholar 

  50. Paelke, V., Röcker, C., Koch, N., Flatt, H., & Büttner, S. (2015). User interfaces for cyber-physical systems. Automatisierungstechnik, 63(10), 833–843.

    Article  Google Scholar 

  51. Hoffmann, C., Büttner, S., Prilla, M., & Wundram, K. (2020, September). Impact of augmented reality guidance for car repairs on novice users of AR: A field experiment on familiar and unfamiliar tasks. In Proceedings of the Conference on Mensch und Computer (pp. 279–289).

    Google Scholar 

  52. Gurevich, P., Lanir, J., Cohen, B., & Stone, R. (2012, May). TeleAdvisor: A versatile augmented reality tool for remote assistance. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 619–622).

    Google Scholar 

  53. Mavrikios, D., Karabatsou, V., Fragos, D., & Chryssolouris, G. (2006). A prototype virtual reality-based demonstrator for immersive and interactive simulation of welding processes. International Journal of Computer Integrated Manufacturing, 19(03), 294–300.

    Article  Google Scholar 

  54. Aehnelt, M., & Wegner, K. (2015, October). Learn but work! Towards self-directed learning at mobile assembly workplaces. In Proceedings of the 15th international conference on knowledge technologies and data-driven business (pp. 1–7)

    Google Scholar 

  55. Haase, T., Keller, A., Warschewske, F., Woitag, M., Sauer, S., & Berndt, D. (2022). Digital assembly assistance systems: Methods, technologies and implementation strategies. In C. Röcker & S. Büttner (Eds.), Human-technology interaction – Shaping the future of industrial user interfaces. Springer.

    Google Scholar 

  56. Krause, F., Bosch, T., Wilschut, E., & Van Rhijn, G. (2022). Cognitive operator support in the manufacturing industry – Three tools to help SMEs select, test and evaluate operator support technology. In C. Röcker & S. Büttner (Eds.), Human-technology interaction – Shaping the future of industrial user interfaces. Springer.

    Google Scholar 

  57. Oestreich, H., Heinz-Jakobs, M., Sehr, P., & Wrede, S. (2022). Human-centered adaptive assistance systems for the shop floor. In C. Röcker & S. Büttner (Eds.), Human-technology interaction – Shaping the future of industrial user interfaces. Springer.

    Google Scholar 

  58. Besginow, A., Büttner, S., Ukita, N., & Röcker, C. (2022). Deep learning-based action detection for continuous quality control in interactive assistance systems. In C. Röcker & S. Büttner (Eds.), Human-technology interaction – Shaping the future of industrial user interfaces. Springer.

    Google Scholar 

  59. Brünninghaus, M., & Deppe, S. (2022). Advancements in vocational training through mobile assistance systems. In C. Röcker & S. Büttner (Eds.), Human-technology interaction – Shaping the future of industrial user interfaces. Springer.

    Google Scholar 

  60. Paelke, V., & Bulk, J. (2022). Designing user-guidance for extended reality interfaces in industrial environments. In C. Röcker & S. Büttner (Eds.), Human-technology interaction – Shaping the future of industrial user interfaces. Springer.

    Google Scholar 

  61. Kosch, T., Knierim, P., Kritzler, M., Beicht, D., & Michahelles, F. (2022). Lenssembly: Authoring assembly instructions in augmented reality using programming-by-demonstration. In C. Röcker & S. Büttner (Eds.), Human-technology interaction – Shaping the future of industrial user interfaces. Springer.

    Google Scholar 

  62. Rumsey, A., & Le Dantec, C. (2022). Escaping the Holodeck: Designing virtual environments for real organizations. In C. Röcker & S. Büttner (Eds.), Human-technology interaction – Shaping the future of industrial user interfaces. Springer.

    Google Scholar 

  63. Korn, O. (2022). Gamification in industrial production: An overview, best practices, and design recommendations. In C. Röcker & S. Büttner (Eds.), Human-technology interaction – Shaping the future of industrial user interfaces. Springer.

    Google Scholar 

  64. Kaasinen, E., Anttila, A., & Heikkilä, P. (2022). New industrial work – Personalised job roles, smooth human-machine teamwork and support for well-being at work. In C. Röcker & S. Büttner (Eds.), Human-technology interaction – Shaping the future of industrial user interfaces. Springer.

    Google Scholar 

  65. Mlekus, L., Bentler, D., Paruzel, A., Kato-Beiderwieden, A. L., & Maier, G. W. (2020). How to raise technology acceptance: User experience characteristics as technology-inherent determinants. Gruppe. Interaktion. Organisation. Zeitschrift für Angewandte Organisationspsychologie (GIO), 51(3), 273–283.

    Article  Google Scholar 

  66. Polzer, S., Frahm, M., Freundel, M., & Nebe, K. (2022). Which factors influence laboratory employees’ acceptance of laboratory 4.0 systems? In C. Röcker & S. Büttner (Eds.), Human-technology interaction – Shaping the future of industrial user interfaces. Springer.

    Google Scholar 

  67. Papenkordt, J., & Thommes, K. (2022). Determinants of trust in smart technologies. In C. Röcker & S. Büttner (Eds.), Human-technology interaction – Shaping the future of industrial user interfaces. Springer.

    Google Scholar 

  68. Brauner, P., Schaar, A., & Ziefle, M. (2022). Interfaces, interactions, and Industry 4.0 – Why and how to design human-centered industrial user interfaces in the Internet of production. In C. Röcker & S. Büttner (Eds.), Human-technology interaction – Shaping the future of industrial user interfaces. Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Röcker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Büttner, S., Röcker, C. (2023). Human-Technology Interaction in the Context of Industry 4.0: Current Trends and Challenges. In: Röcker, C., Büttner, S. (eds) Human-Technology Interaction. Springer, Cham. https://doi.org/10.1007/978-3-030-99235-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99235-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99234-7

  • Online ISBN: 978-3-030-99235-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics