Skip to main content

FatigueSet: A Multi-modal Dataset for Modeling Mental Fatigue and Fatigability

Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST,volume 431)

Abstract

A comprehensive understanding of fatigue and its impact on performance is a prerequisite for fatigue management systems in the real world. However, fatigue is a multidimensional construct that is often poorly defined, and most prior work does not take into consideration how different types of fatigue collectively influence performance. The physiological markers associated with different types of fatigue are also underexplored, hindering the development of fatigue management technologies that can leverage mobile and wearable sensors to predict fatigue. In this work, we present FatigueSet, a multi-modal dataset including sensor data from four wearable devices that are collected while participants are engaged in physically and mentally demanding tasks. We describe the study design that enables us to investigate the effect of physical activity on mental fatigue under various situations. FatigueSet facilitates further research towards a deeper understanding of fatigue and the development of diverse fatigue-aware applications.

Keywords

  • Fatigue
  • Multi-modal sensing
  • Cognitive performance

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-99194-4_14
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-99194-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Notes

  1. 1.

    https://www.esense.io/datasets/fatigueset.

References

  1. E4 Wristband. https://www.empatica.com/research/e4/

  2. eSense overview. https://www.esense.io/

  3. Introducing Muse S. https://choosemuse.com/muse-s/

  4. ZephyrTM performance systems. https://www.zephyranywhere.com/

  5. Fatigue, July 2021. https://www.ccohs.ca//oshanswers/psychosocial/fatigue.html

  6. Ahlstrom, C., et al.: Fit-for-duty test for estimation of drivers’ sleepiness level: eye movements improve the sleep/wake predictor. Transp. Res. Part C: Emerg. Technol. 26, 20–32 (2013)

    CrossRef  Google Scholar 

  7. Borg, G.: Perceived exertion as an indicator of somatic stress. Scand. J. Rehabil. Med. 2(2), 92–98 (1970)

    Google Scholar 

  8. Chmura, J., Nazar, K., Kaciuba-Uścilko, H.: Choice reaction time during graded exercise in relation to blood lactate and plasma catecholamine thresholds. Int. J. Sports Med. 15(04), 172–176 (1994)

    CrossRef  Google Scholar 

  9. Craig, A., Tran, Y., Wijesuriya, N., Nguyen, H.: Regional brain wave activity changes associated with fatigue. Psychophysiology 49(4), 574–582 (2012)

    CrossRef  Google Scholar 

  10. Deary, I.J., Liewald, D., Nissan, J.: A free, easy-to-use, computer-based simple and four-choice reaction time programme: the deary-liewald reaction time task. Behav. Res. Methods 43(1), 258–268 (2011)

    CrossRef  Google Scholar 

  11. Dittner, A.J., Wessely, S.C., Brown, R.G.: The assessment of fatigue: a practical guide for clinicians and researchers. J. Psychosom. Res. 56(2), 157–170 (2004)

    CrossRef  Google Scholar 

  12. Elshafei, M., Shihab, E.: Towards detecting biceps muscle fatigue in gym activity using wearables. Sensors 21(3), 759 (2021)

    CrossRef  Google Scholar 

  13. Gjoreski, M., et al.: Datasets for cognitive load inference using wearable sensors and psychological traits. Appl. Sci. 10(11), 3843 (2020)

    CrossRef  Google Scholar 

  14. Häkkinen, K.: Neuromuscular fatigue and recovery in male and female athletes during heavy resistance exercise. Int. J. Sports Med. 14(02), 53–59 (1993)

    CrossRef  Google Scholar 

  15. Janveja, I., Nambi, A., Bannur, S., Gupta, S., Padmanabhan, V.: Insight: monitoring the state of the driver in low-light using smartphones. Proc. ACM Interact. Mob. Wearable Ubiquit. Technol. 4(3), 1–29 (2020)

    CrossRef  Google Scholar 

  16. Jetté, M., Sidney, K., Blümchen, G.: Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin. Cardiol. 13(8), 555–565 (1990)

    CrossRef  Google Scholar 

  17. Kane, M.J., Conway, A.R., Miura, T.K., Colflesh, G.J.: Working memory, attention control, and the n-back task: a question of construct validity. J. Exp. Psychol. Learn. Mem. Cogn. 33(3), 615 (2007)

    CrossRef  Google Scholar 

  18. Kawsar, F., Min, C., Mathur, A., Montanari, A.: Earables for personal-scale behavior analytics. IEEE Pervasive Comput. 17(3), 83–89 (2018)

    CrossRef  Google Scholar 

  19. Kluger, B.M., Krupp, L.B., Enoka, R.M.: Fatigue and fatigability in neurologic illnesses: proposal for a unified taxonomy. Neurology 80(4), 409–416 (2013)

    CrossRef  Google Scholar 

  20. Krausman, A.S., Crowell III, H.P., Wilson, R.M.: The effects of physical exertion on cognitive performance. Technical report, Army Research Lab Aberdeen Proving Ground MD (2002)

    Google Scholar 

  21. Krupp, L.B., LaRocca, N.G., Muir-Nash, J., Steinberg, A.D.: The fatigue severity scale: application to patients with multiple sclerosis and systemic lupus erythematosus. Arch. Neurol. 46(10), 1121–1123 (1989)

    CrossRef  Google Scholar 

  22. Levitt, S., Gutin, B.: Multiple choice reaction time and movement time during physical exertion. Res. Q. Am. Assoc. Health Phys. Educ. Recreation 42(4), 405–410 (1971)

    CrossRef  Google Scholar 

  23. Li, F., Chen, C.H., Xu, G., Khoo, L.P., Liu, Y.: Proactive mental fatigue detection of traffic control operators using bagged trees and gaze-bin analysis. Adv. Eng. Inform. 42, 100987 (2019)

    CrossRef  Google Scholar 

  24. Lorist, M.M., Klein, M., Nieuwenhuis, S., De Jong, R., Mulder, G., Meijman, T.F.: Mental fatigue and task control: planning and preparation. Psychophysiology 37(5), 614–625 (2000)

    CrossRef  Google Scholar 

  25. Luo, H., Lee, P.A., Clay, I., Jaggi, M., De Luca, V.: Assessment of fatigue using wearable sensors: a pilot study. Digit. Biomarkers 4(1), 59–72 (2020)

    CrossRef  Google Scholar 

  26. Maman, Z.S., Yazdi, M.A.A., Cavuoto, L.A., Megahed, F.M.: A data-driven approach to modeling physical fatigue in the workplace using wearable sensors. Appl. Ergon. 65, 515–529 (2017)

    CrossRef  Google Scholar 

  27. Marcora, S.M., Staiano, W., Manning, V.: Mental fatigue impairs physical performance in humans. J. Appl. Physiol. 106(3), 857–864 (2009)

    CrossRef  Google Scholar 

  28. Monk, T.H.: A visual analogue scale technique to measure global vigor and affect. Psychiatry Res. 27(1), 89–99 (1989)

    CrossRef  Google Scholar 

  29. Norton, K., Norton, L., Sadgrove, D.: Position statement on physical activity and exercise intensity terminology. J. Sci. Med. Sport 13(5), 496–502 (2010)

    CrossRef  Google Scholar 

  30. Ortega, F.B., et al.: The international fitness scale (IFIS): usefulness of self-reported fitness in youth. Int. J. Epidemiol. 40(3), 701–711 (2011)

    CrossRef  Google Scholar 

  31. O’Keeffe, K., Hodder, S., Lloyd, A.: A comparison of methods used for inducing mental fatigue in performance research: individualised, dual-task and short duration cognitive tests are most effective. Ergonomics 63(1), 1–12 (2020)

    CrossRef  Google Scholar 

  32. Peirce, J., et al.: Psychopy2: experiments in behavior made easy. Behav. Res. Methods 51(1), 195–203 (2019)

    CrossRef  Google Scholar 

  33. Phillips, R.O.: A review of definitions of fatigue-and a step towards a whole definition. Transport. Res. F: Traffic Psychol. Behav. 29, 48–56 (2015)

    CrossRef  Google Scholar 

  34. Rammstedt, B., John, O.P.: Measuring personality in one minute or less: a 10-item short version of the big five inventory in English and German. J. Res. Pers. 41(1), 203–212 (2007)

    CrossRef  Google Scholar 

  35. Roenneberg, T., Wirz-Justice, A., Merrow, M.: Life between clocks: daily temporal patterns of human chronotypes. J. Biol. Rhythms 18(1), 80–90 (2003)

    CrossRef  Google Scholar 

  36. Rogers, R.D., Monsell, S.: Costs of a predictible switch between simple cognitive tasks. J. Exp. Psychol. Gen. 124(2), 207 (1995)

    CrossRef  Google Scholar 

  37. Shahid, A., Wilkinson, K., Marcu, S., Shapiro, C.M.: Stanford sleepiness scale (SSS). In: Shahid, A., Wilkinson, K., Marcu, S., Shapiro, C.M. (eds.) STOP, THAT and One Hundred Other Sleep Scales, pp. 369–370. Springer, Heidelberg (2011). https://doi.org/10.1007/978-1-4419-9893-4_91

    CrossRef  Google Scholar 

  38. Shen, K.Q., Li, X.P., Ong, C.J., Shao, S.Y., Wilder-Smith, E.P.: EEG-based mental fatigue measurement using multi-class support vector machines with confidence estimate. Clin. Neurophysiol. 119(7), 1524–1533 (2008)

    CrossRef  Google Scholar 

  39. Silverman, M.N., Heim, C.M., Nater, U.M., Marques, A.H., Sternberg, E.M.: Neuroendocrine and immune contributors to fatigue. PM&R 2(5), 338–346 (2010)

    CrossRef  Google Scholar 

  40. Smith, M.R., Chai, R., Nguyen, H.T., Marcora, S.M., Coutts, A.J.: Comparing the effects of three cognitive tasks on indicators of mental fatigue. J. Psychol. 153(8), 759–783 (2019)

    CrossRef  Google Scholar 

  41. Van Cutsem, J., Marcora, S., De Pauw, K., Bailey, S., Meeusen, R., Roelands, B.: The effects of mental fatigue on physical performance: a systematic review. Sports Med. 47(8), 1569–1588 (2017)

    CrossRef  Google Scholar 

  42. Van Dongen, H., Belenky, G., Krueger, J.M.: Investigating the temporal dynamics and underlying mechanisms of cognitive fatigue (2011)

    Google Scholar 

  43. Wan, J., Qin, Z., Wang, P., Sun, Y., Liu, X.: Muscle fatigue: general understanding and treatment. Exp. Mol. Med. 49(10), e384–e384 (2017)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manasa Kalanadhabhatta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Kalanadhabhatta, M., Min, C., Montanari, A., Kawsar, F. (2022). FatigueSet: A Multi-modal Dataset for Modeling Mental Fatigue and Fatigability. In: Lewy, H., Barkan, R. (eds) Pervasive Computing Technologies for Healthcare. PH 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 431. Springer, Cham. https://doi.org/10.1007/978-3-030-99194-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99194-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99193-7

  • Online ISBN: 978-3-030-99194-4

  • eBook Packages: Computer ScienceComputer Science (R0)