Abstract
A comprehensive understanding of fatigue and its impact on performance is a prerequisite for fatigue management systems in the real world. However, fatigue is a multidimensional construct that is often poorly defined, and most prior work does not take into consideration how different types of fatigue collectively influence performance. The physiological markers associated with different types of fatigue are also underexplored, hindering the development of fatigue management technologies that can leverage mobile and wearable sensors to predict fatigue. In this work, we present FatigueSet, a multi-modal dataset including sensor data from four wearable devices that are collected while participants are engaged in physically and mentally demanding tasks. We describe the study design that enables us to investigate the effect of physical activity on mental fatigue under various situations. FatigueSet facilitates further research towards a deeper understanding of fatigue and the development of diverse fatigue-aware applications.
Keywords
- Fatigue
- Multi-modal sensing
- Cognitive performance
This is a preview of subscription content, access via your institution.
Buying options










References
E4 Wristband. https://www.empatica.com/research/e4/
eSense overview. https://www.esense.io/
Introducing Muse S. https://choosemuse.com/muse-s/
ZephyrTM performance systems. https://www.zephyranywhere.com/
Fatigue, July 2021. https://www.ccohs.ca//oshanswers/psychosocial/fatigue.html
Ahlstrom, C., et al.: Fit-for-duty test for estimation of drivers’ sleepiness level: eye movements improve the sleep/wake predictor. Transp. Res. Part C: Emerg. Technol. 26, 20–32 (2013)
Borg, G.: Perceived exertion as an indicator of somatic stress. Scand. J. Rehabil. Med. 2(2), 92–98 (1970)
Chmura, J., Nazar, K., Kaciuba-Uścilko, H.: Choice reaction time during graded exercise in relation to blood lactate and plasma catecholamine thresholds. Int. J. Sports Med. 15(04), 172–176 (1994)
Craig, A., Tran, Y., Wijesuriya, N., Nguyen, H.: Regional brain wave activity changes associated with fatigue. Psychophysiology 49(4), 574–582 (2012)
Deary, I.J., Liewald, D., Nissan, J.: A free, easy-to-use, computer-based simple and four-choice reaction time programme: the deary-liewald reaction time task. Behav. Res. Methods 43(1), 258–268 (2011)
Dittner, A.J., Wessely, S.C., Brown, R.G.: The assessment of fatigue: a practical guide for clinicians and researchers. J. Psychosom. Res. 56(2), 157–170 (2004)
Elshafei, M., Shihab, E.: Towards detecting biceps muscle fatigue in gym activity using wearables. Sensors 21(3), 759 (2021)
Gjoreski, M., et al.: Datasets for cognitive load inference using wearable sensors and psychological traits. Appl. Sci. 10(11), 3843 (2020)
Häkkinen, K.: Neuromuscular fatigue and recovery in male and female athletes during heavy resistance exercise. Int. J. Sports Med. 14(02), 53–59 (1993)
Janveja, I., Nambi, A., Bannur, S., Gupta, S., Padmanabhan, V.: Insight: monitoring the state of the driver in low-light using smartphones. Proc. ACM Interact. Mob. Wearable Ubiquit. Technol. 4(3), 1–29 (2020)
Jetté, M., Sidney, K., Blümchen, G.: Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin. Cardiol. 13(8), 555–565 (1990)
Kane, M.J., Conway, A.R., Miura, T.K., Colflesh, G.J.: Working memory, attention control, and the n-back task: a question of construct validity. J. Exp. Psychol. Learn. Mem. Cogn. 33(3), 615 (2007)
Kawsar, F., Min, C., Mathur, A., Montanari, A.: Earables for personal-scale behavior analytics. IEEE Pervasive Comput. 17(3), 83–89 (2018)
Kluger, B.M., Krupp, L.B., Enoka, R.M.: Fatigue and fatigability in neurologic illnesses: proposal for a unified taxonomy. Neurology 80(4), 409–416 (2013)
Krausman, A.S., Crowell III, H.P., Wilson, R.M.: The effects of physical exertion on cognitive performance. Technical report, Army Research Lab Aberdeen Proving Ground MD (2002)
Krupp, L.B., LaRocca, N.G., Muir-Nash, J., Steinberg, A.D.: The fatigue severity scale: application to patients with multiple sclerosis and systemic lupus erythematosus. Arch. Neurol. 46(10), 1121–1123 (1989)
Levitt, S., Gutin, B.: Multiple choice reaction time and movement time during physical exertion. Res. Q. Am. Assoc. Health Phys. Educ. Recreation 42(4), 405–410 (1971)
Li, F., Chen, C.H., Xu, G., Khoo, L.P., Liu, Y.: Proactive mental fatigue detection of traffic control operators using bagged trees and gaze-bin analysis. Adv. Eng. Inform. 42, 100987 (2019)
Lorist, M.M., Klein, M., Nieuwenhuis, S., De Jong, R., Mulder, G., Meijman, T.F.: Mental fatigue and task control: planning and preparation. Psychophysiology 37(5), 614–625 (2000)
Luo, H., Lee, P.A., Clay, I., Jaggi, M., De Luca, V.: Assessment of fatigue using wearable sensors: a pilot study. Digit. Biomarkers 4(1), 59–72 (2020)
Maman, Z.S., Yazdi, M.A.A., Cavuoto, L.A., Megahed, F.M.: A data-driven approach to modeling physical fatigue in the workplace using wearable sensors. Appl. Ergon. 65, 515–529 (2017)
Marcora, S.M., Staiano, W., Manning, V.: Mental fatigue impairs physical performance in humans. J. Appl. Physiol. 106(3), 857–864 (2009)
Monk, T.H.: A visual analogue scale technique to measure global vigor and affect. Psychiatry Res. 27(1), 89–99 (1989)
Norton, K., Norton, L., Sadgrove, D.: Position statement on physical activity and exercise intensity terminology. J. Sci. Med. Sport 13(5), 496–502 (2010)
Ortega, F.B., et al.: The international fitness scale (IFIS): usefulness of self-reported fitness in youth. Int. J. Epidemiol. 40(3), 701–711 (2011)
O’Keeffe, K., Hodder, S., Lloyd, A.: A comparison of methods used for inducing mental fatigue in performance research: individualised, dual-task and short duration cognitive tests are most effective. Ergonomics 63(1), 1–12 (2020)
Peirce, J., et al.: Psychopy2: experiments in behavior made easy. Behav. Res. Methods 51(1), 195–203 (2019)
Phillips, R.O.: A review of definitions of fatigue-and a step towards a whole definition. Transport. Res. F: Traffic Psychol. Behav. 29, 48–56 (2015)
Rammstedt, B., John, O.P.: Measuring personality in one minute or less: a 10-item short version of the big five inventory in English and German. J. Res. Pers. 41(1), 203–212 (2007)
Roenneberg, T., Wirz-Justice, A., Merrow, M.: Life between clocks: daily temporal patterns of human chronotypes. J. Biol. Rhythms 18(1), 80–90 (2003)
Rogers, R.D., Monsell, S.: Costs of a predictible switch between simple cognitive tasks. J. Exp. Psychol. Gen. 124(2), 207 (1995)
Shahid, A., Wilkinson, K., Marcu, S., Shapiro, C.M.: Stanford sleepiness scale (SSS). In: Shahid, A., Wilkinson, K., Marcu, S., Shapiro, C.M. (eds.) STOP, THAT and One Hundred Other Sleep Scales, pp. 369–370. Springer, Heidelberg (2011). https://doi.org/10.1007/978-1-4419-9893-4_91
Shen, K.Q., Li, X.P., Ong, C.J., Shao, S.Y., Wilder-Smith, E.P.: EEG-based mental fatigue measurement using multi-class support vector machines with confidence estimate. Clin. Neurophysiol. 119(7), 1524–1533 (2008)
Silverman, M.N., Heim, C.M., Nater, U.M., Marques, A.H., Sternberg, E.M.: Neuroendocrine and immune contributors to fatigue. PM&R 2(5), 338–346 (2010)
Smith, M.R., Chai, R., Nguyen, H.T., Marcora, S.M., Coutts, A.J.: Comparing the effects of three cognitive tasks on indicators of mental fatigue. J. Psychol. 153(8), 759–783 (2019)
Van Cutsem, J., Marcora, S., De Pauw, K., Bailey, S., Meeusen, R., Roelands, B.: The effects of mental fatigue on physical performance: a systematic review. Sports Med. 47(8), 1569–1588 (2017)
Van Dongen, H., Belenky, G., Krueger, J.M.: Investigating the temporal dynamics and underlying mechanisms of cognitive fatigue (2011)
Wan, J., Qin, Z., Wang, P., Sun, Y., Liu, X.: Muscle fatigue: general understanding and treatment. Exp. Mol. Med. 49(10), e384–e384 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Kalanadhabhatta, M., Min, C., Montanari, A., Kawsar, F. (2022). FatigueSet: A Multi-modal Dataset for Modeling Mental Fatigue and Fatigability. In: Lewy, H., Barkan, R. (eds) Pervasive Computing Technologies for Healthcare. PH 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 431. Springer, Cham. https://doi.org/10.1007/978-3-030-99194-4_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-99194-4_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-99193-7
Online ISBN: 978-3-030-99194-4
eBook Packages: Computer ScienceComputer Science (R0)