Skip to main content

Hidden Markov Models: Discrete Feature Selection in Activity Recognition

  • Chapter
  • First Online:
Hidden Markov Models and Applications

Part of the book series: Unsupervised and Semi-Supervised Learning ((UNSESUL))

  • 852 Accesses

Abstract

Hidden Markov models represent one of the pillars of time series and sequential modelling. Its application is wide-reaching. In this chapter, we focus on its investigation for the recognition of indoor activities. The challenging nature of the problem is further enforced by the binary nature of the benchmark dataset that we have considered for this task and its relatively low number of features. We further experiment with the filter- and wrapper-based feature selection techniques. This application is of significant importance, especially in the arena of smart city and Internet of Things applications. Finally, we present our experimental results and draw relevant conclusions as well as potential future works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://archive.ics.uci.edu/ml/datasets/opportunity+activity+recognition.

References

  1. M. Angelidou, Smart cities: a conjuncture of four forces. Cities 47, 95–106 (2015). Current Research on Cities (CRoC). https://www.sciencedirect.com/science/article/pii/S0264275115000633

  2. M.M. Rathore, A. Ahmad, A. Paul, S. Rho, Urban planning and building smart cities based on the internet of things using big data analytics. Comput. Netw. 101, 63–80 (2016). Industrial Technologies and Applications for the Internet of Things. https://www.sciencedirect.com/science/article/pii/S1389128616000086

  3. W. Shen, G. Newsham, B. Gunay, Leveraging existing occupancy-related data for optimal control of commercial office buildings: a review. Adv. Eng. Inf. 33, 230–242 (2017). http://www.sciencedirect.com/science/article/pii/S1474034616301987

    Article  Google Scholar 

  4. X. Dai, J. Liu, X. Zhang, A review of studies applying machine learning models to predict occupancy and window-opening behaviours in smart buildings. Energy Build. 223, 110159 (2020). http://www.sciencedirect.com/science/article/pii/S0378778820303017

    Article  Google Scholar 

  5. K. Akkaya, I. Guvenc, R. Aygun, N. Pala, A. Kadri, IoT-based occupancy monitoring techniques for energy-efficient smart buildings, in 2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW) (2015), pp. 58–63

    Google Scholar 

  6. M. Yoshida, S. Kleisarchaki, L. Gtirgen, H. Nishi, Indoor occupancy estimation via location-aware hmm: an IoT approach, in 2018 IEEE 19th International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM) (2018), pp. 14–19

    Google Scholar 

  7. H. Arasteh, V. Hosseinnezhad, V. Loia, A. Tommasetti, O. Troisi, M. Shafie-khah, P. Siano, Iot-based smart cities: a survey, in 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC) (2016), pp. 1–6

    Google Scholar 

  8. E. Kim, S. Helal, D. Cook, Human activity recognition and pattern discovery. IEEE Pervasive Comput. 9(1), 48–53 (2010)

    Article  Google Scholar 

  9. J. Guo, Y. Li, M. Hou, S. Han, J. Ren, Recognition of daily activities of two residents in a smart home based on time clustering. Sensors 20(5), 1457 (2020)

    Google Scholar 

  10. L. Chen, J. Hoey, C.D. Nugent, D.J. Cook, Z. Yu, Sensor-based activity recognition. IEEE Trans. Syst. Man, Cybern. C 42(6), 790–808 (2012)

    Google Scholar 

  11. M.H. Kolekar, D.P. Dash, Hidden Markov model based human activity recognition using shape and optical flow based features, in 2016 IEEE Region 10 Conference (TENCON) (2016), pp. 393–397

    Google Scholar 

  12. M.H. Siddiqi, M. Alruwaili, A. Ali, S. Alanazi, F. Zeshan, Human activity recognition using gaussian mixture hidden conditional random fields. Comput. Intell. Neurosci. 2019, 8590560 (2019). https://doi.org/10.1155/2019/8590560

    Article  Google Scholar 

  13. H. Sagha, S.T. Digumarti, J. del R. Millaan, R. Chavarriaga, A. Calatroni, D. Roggen, G. Trauster, Benchmarking classification techniques using the opportunity human activity dataset, in 2011 IEEE International Conference on Systems, Man, and Cybernetics (2011), pp. 36–40

    Google Scholar 

  14. L.R. Rabiner, A tutorial on hidden markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  15. E. Epaillard, N. Bouguila, Proportional data modeling with hidden Markov models based on generalized dirichlet and beta-liouville mixtures applied to anomaly detection in public areas. Pattern Recognit. 55, 125–136 (2016). https://doi.org/10.1016/j.patcog.2016.02.004

    Article  Google Scholar 

  16. E. Epaillard, N. Bouguila, Variational Bayesian learning of generalized dirichlet-based hidden Markov models applied to unusual events detection. IEEE Trans. Neural Netw. Learn. Syst. 30(4), 1034–1047 (2019). https://doi.org/10.1109/TNNLS.2018.2855699

    Article  MathSciNet  Google Scholar 

  17. E. Epaillard, N. Bouguila, Data-free metrics for dirichlet and generalized dirichlet mixture-based hmms - A practical study. Pattern Recognit. 85, 207–219 (2019). https://doi.org/10.1016/j.patcog.2018.08.013

    Article  Google Scholar 

  18. S. Ali, N. Bouguila, Variational learning of beta-liouville hidden Markov models for infrared action recognition, in IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2019, Long Beach, June 16–20, 2019 (Computer Vision Foundation/IEEE, Piscataway, 2019), pp. 898–906. http://openaccess.thecvf.com/content_CVPRW_2019/html/PBVS/Ali_Variational_Learning_of_Beta-Liouville_Hidden_Markov_Models_for_Infrared_Action_CVPRW_2019_paper.html

  19. E. Epaillard, N. Bouguila, Hidden Markov models based on generalized dirichlet mixtures for proportional data modeling, in Artificial Neural Networks in Pattern Recognition, ed. by N. El Gayar, F. Schwenker, C. Suen (Springer, Cham, 2014), pp. 71–82

    Google Scholar 

  20. R. Nasfi, M. Amayri, N. Bouguila, A novel approach for modeling positive vectors with inverted dirichlet-based hidden markov models. Knowl.-Based Syst. 192, 105335 (2020). http://www.sciencedirect.com/science/article/pii/S0950705119306057

    Article  Google Scholar 

  21. S. Ali, N. Bouguila, Hybrid generative-discriminative generalized dirichlet-based hidden Markov models with support vector machines, in 2019 IEEE International Symposium on Multimedia (ISM) (IEEE, Piscataway, 2019), pp. 231–2311

    Google Scholar 

  22. S. Ali, N. Bouguila, Dynamic texture recognition using a hybrid generative-discriminative approach with hidden Markov models and support vector machines, in 2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP) (IEEE, Piscataway, 2019), pp. 1–5

    Google Scholar 

  23. S. Ali, N. Bouguila, Online learning for beta-liouville hidden markov models: incremental variational learning for video surveillance and action recognition, in 2020 IEEE International Conference on Image Processing (ICIP) (IEEE, Piscataway, 2020), pp. 3249–3253

    Google Scholar 

  24. Y. Kim, B. Kang, D. Kim, Hidden Markov model ensemble for activity recognition using tri-axis accelerometer, in 2015 IEEE International Conference on Systems, Man, and Cybernetics (2015), pp. 3036–3041

    Google Scholar 

  25. C. Yang, Z. Wang, B. Wang, S. Deng, G. Liu, Y. Kang, H. Men, Char-hmm: an improved continuous human activity recognition algorithm based on hidden Markov model, in International Conference on Mobile Ad-Hoc and Sensor Networks (Springer, Berlin, 2017), pp. 271–282

    Google Scholar 

  26. M.H. Kabir, M.R. Hoque, K. Thapa, S.-H. Yang, Two-layer hidden Markov model for human activity recognition in home environments. Int. J. Distrib. Sens. Netw. 12(1), 4560365 (2016). https://doi.org/10.1155/2016/4560365

  27. T. van Kasteren, A. Noulas, G. Englebienne, B. Kröse, Accurate activity recognition in a home setting, in Proceedings of the 10th International Conference on Ubiquitous Computing, ser. UbiComp’08. (Association for Computing Machinery, New York, 2008), pp. 1–9. https://doi.org/10.1145/1409635.1409637

  28. N.A. Capela, E.D. Lemaire, N. Baddour, Feature selection for wearable smartphone-based human activity recognition with able bodied, elderly, and stroke patients. Plos One 10(4), 1–18 (2015). https://doi.org/10.1371/journal.pone.0124414

    Article  Google Scholar 

  29. M. Shafiq, Z. Tian, A.K. Bashir, X. Du, M. Guizani, IoT malicious traffic identification using wrapper-based feature selection mechanisms. Comput. Secur. 94, 101863 (2020). https://www.sciencedirect.com/science/article/pii/S0167404820301358

    Article  Google Scholar 

  30. S. Boutemedjet, D. Ziou, N. Bouguila, Unsupervised feature selection for accurate recommendation of high-dimensional image data, in Advances in Neural Information Processing Systems 20, Proceedings of the Twenty-First Annual Conference on Neural Information Processing Systems, Vancouver, December 3–6, 2007, ed. by J.C. Platt, D. Koller, Y. Singer, S.T. Roweis (Curran Associates, New York, 2007), pp. 177–184. https://proceedings.neurips.cc/paper/2007/hash/073b00ab99487b74b63c9a6d2b962ddc-Abstract.html

  31. M.A. Mashrgy, T. Bdiri, N. Bouguila, Robust simultaneous positive data clustering and unsupervised feature selection using generalized inverted dirichlet mixture models. Knowl. Based Syst. 59, 182–195 (2014). https://doi.org/10.1016/j.knosys.2014.01.007

    Article  Google Scholar 

  32. T. Bdiri, N. Bouguila, D. Ziou, Variational bayesian inference for infinite generalized inverted dirichlet mixtures with feature selection and its application to clustering. Appl. Intell. 44(3), 507–525 (2016). https://doi.org/10.1007/s10489-015-0714-6

    Article  Google Scholar 

  33. N. Bouguila, K. Almakadmeh, S. Boutemedjet, A finite mixture model for simultaneous high-dimensional clustering, localized feature selection and outlier rejection. Exp. Syst. Appl. 39(7), 6641–6656 (2012). https://doi.org/10.1016/j.eswa.2011.12.038

    Article  Google Scholar 

  34. T. Elguebaly, N. Bouguila, Simultaneous high-dimensional clustering and feature selection using asymmetric gaussian mixture models. Image Vis. Comput. 34, 27–41 (2015). https://doi.org/10.1016/j.imavis.2014.10.011

    Article  Google Scholar 

  35. N. Bouguila, D. Ziou, A countably infinite mixture model for clustering and feature selection. Knowl. Inf. Syst. 33(2), 351–370 (2012). https://doi.org/10.1007/s10115-011-0467-4

    Article  Google Scholar 

  36. The SAGE encyclopedia of educational research, measurement, and evaluation AU - Frey, Bruce B. Thousand Oaks, California (2018). https://doi.org/10.4135/9781506326139

  37. S. Balakrishnama, A. Ganapathiraju, Linear discriminant analysis-a brief tutorial. Inst. Signal Inf. Process. 18(1998), 1–8 (1998)

    Google Scholar 

  38. M. Cherrington, F. Thabtah, J. Lu, Q. Xu, Feature selection: filter methods performance challenges, in 2019 International Conference on Computer and Information Sciences (ICCIS) (2019), pp. 1–4

    Google Scholar 

  39. J.R. Vergara, P.A. Estévez, A review of feature selection methods based on mutual information. Neural Comput. Appl. 24(1), 175–186 (2014). https://doi.org/10.1007/s00521-013-1368-0

    Article  Google Scholar 

  40. B. Wu, L. Zhang, Y. Zhao, Feature selection via cramer’s v-test discretization for remote-sensing image classification. IEEE Trans. Geosci. Remote Sens. 52(5), 2593–2606 (2014)

    Article  Google Scholar 

  41. X. Geng, T.-Y. Liu, T. Qin, H. Li, Feature selection for ranking, in Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, ser. SIGIR’07. (Association for Computing Machinery, New York, 2007), pp. 407–414. https://doi.org/10.1145/1277741.1277811

  42. D. Roggen, A. Calatroni, M. Rossi, T. Holleczek, K. Faurster, G. Trauster, P. Lukowicz, D. Bannach, G. Pirkl, A. Ferscha, J. Doppler, C. Holzmann, M. Kurz, G. Holl, R. Chavarriaga, H. Sagha, H. Bayati, M. Creatura, J.D.R. Millaan, Collecting complex activity datasets in highly rich networked sensor environments, in 2010 Seventh International Conference on Networked Sensing Systems (INSS) (2010), pp. 233–240

    Google Scholar 

  43. J. Pohle, R. Langrock, F.M. van Beest, N.M. Schmidt, Selecting the number of states in hidden Markov models: pragmatic solutions illustrated using animal movement. J. Agric. Biol. Environ. Stat. 22(3), 270–293 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was funded and supported by Ericsson—Global Artificial Intelligence Accelerator in Montreal and a Mitacs Accelerate fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nizar Bouguila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cite this chapter

Ali, S., Bouguila, N. (2022). Hidden Markov Models: Discrete Feature Selection in Activity Recognition. In: Bouguila, N., Fan, W., Amayri, M. (eds) Hidden Markov Models and Applications. Unsupervised and Semi-Supervised Learning. Springer, Cham. https://doi.org/10.1007/978-3-030-99142-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99142-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99141-8

  • Online ISBN: 978-3-030-99142-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics