Skip to main content

Lateral Tibial Condyle Fracture Stabilization—A Numerical Analysis

  • Chapter
  • First Online:
Innovations in Biomedical Engineering

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 409))

  • 273 Accesses

Abstract

In this article, four variants of tibial lateral condyle split fracture stabilization (AO 41-B1.1) with two canulated cancellous screws were studied. The impact of a diameter and length of the thread on the distribution and values of the stress and displacement in the stabilization model was analyzed utilizing the finite element method. Geometric model was derived from CT imaging of 39 years-old female tibial bone. The geometric and numerical models of the individual variants of fracture stabilization were prepared in ANSYS Workbench Software. During the analysis, the Huber-Mises stress of each part of the models and the displacement between bone and split fragment were designated. An influence of the thread diameter on maximum values and distribution of the stress was observed while the thread length did not render any significant impact. For all analyzed variants, the displacement values and distribution were similar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duwelius PJ, Templeman DC (1996) The knee: tibial plateau fracture reduction techniques utilizing cannulated screw fixation. Springer, New York, pp 170–188

    Google Scholar 

  2. Schatzker J (1987) Fractures of the tibial plateau. Springer, Heidelberg, pp 279–295

    Google Scholar 

  3. Prat-Fabregat S, Camacho-Carrasco P (2016) EFORT open reviews, vol 1

    Google Scholar 

  4. Baron ML, Cermolacce M, Flecher X, Guillotin C, Bauer T, Ehlinger M (2019) Orthop Traumatol Surg Res 105:2

    Google Scholar 

  5. Elabjer E, Benčić I, Ćuti T, Cerovečki T, Ćurić S, Vidović D (2017) Injury 48:11

    Google Scholar 

  6. Kojima K, Gueorguiev B, Seva G, Stoffel K, de Oliveira RG, Eberli U, Nicolino T, Lenz M (2015) Medicine 94:1

    Google Scholar 

  7. Carrera I, Gelber PE, Chary G, González-Ballester MA, Monllau JC, Noailly J (2016) Int Orthop 40:10

    Google Scholar 

  8. Hansen M, Pesantez R: Treatment of partial articular fracture, split

    Google Scholar 

  9. Rudran B, Little C, Wiik A, Logishetty K (2020) Br J Hosp Med 81:10

    Google Scholar 

  10. Salduz A, Birisik F, Polat G, Bekler B, Bozdag E, Kilicoglu O (2016) J Orthop Surg Res 11:12

    Google Scholar 

  11. Moran E, Zderic I, Klos K, Simons P, Triana M, Richards RG, Gueorguiev B, Lenz M (2017) J Orthop Transl 11:10

    Google Scholar 

  12. DeCoster TA, Heetderks DB, Downey DJ, Ferries JS, Jones W (1990) J Orthop Trauma 4:6

    Google Scholar 

  13. Chapman JR, Harrington RM, Lee KM, Anderson PA, Tencer AF, Kowalski D (1996) J Biomech Eng 118:8

    Google Scholar 

  14. Słowiński JJ (2010) Analiza stanu naprężeń w konstrukcji indywidualnego implantu kostnego. Ph.D. thesis, Politechnika Wrocławska, Instytut Materiałoznawstwa i Mechaniki Technicznej. (in Polish)

    Google Scholar 

  15. Inzana JA, Varga P, Windolf M (2016) J Biomech 49:6

    Google Scholar 

  16. Orthoload: Database

    Google Scholar 

  17. Będziński R (1997) Biomechanika inżynierska, Zagadnienia wybrane. Oficyna Wydawnicza Politechniki Wrocławskiej. (in Polish)

    Google Scholar 

  18. Hvid I, Christensen P, Søndergaard J, Christensen PB, Larsen GC (1983) Acta Orthop Scand 54:1

    Google Scholar 

  19. Hansen M, Pesantez R: Lag screw technique

    Google Scholar 

Download references

Acknowledgements

The calculations were made using the resources of the Wroclaw Centre for Networking and Supercomputing (http://www.wcss.pl), calculation Grant no. 397.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olimpia Promirska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Promirska, O., Słowiński, J. (2023). Lateral Tibial Condyle Fracture Stabilization—A Numerical Analysis. In: Gzik, M., Paszenda, Z., Piętka, E., Tkacz, E., Milewski, K., Jurkojć, J. (eds) Innovations in Biomedical Engineering. Lecture Notes in Networks and Systems, vol 409. Springer, Cham. https://doi.org/10.1007/978-3-030-99112-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99112-8_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99111-1

  • Online ISBN: 978-3-030-99112-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics