Skip to main content

Modelling the Dynamics of a CNC Spindle for Tool Condition Identification Based on On-Rotor Sensing

  • Conference paper
  • First Online:
Proceedings of IncoME-VI and TEPEN 2021

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 117))

  • 1487 Accesses

Abstract

Cutting tool plays an important role in modern manufacturing industry, however, tool wear is unavoidable during machining which could reduce the efficiency. Aiming at studying an appropriate and efficient tool condition monitoring method to improve the accuracy of finished parts, the roughness of the turned surface, a novel On-Rotor Sensing (ORS) is installed on the rotating workpiece to obtain vibration signals. To get an in-depth understand of the vibration data, a multi-degree-of-freedom (MDOF) system consisted of spindle, chuck and workpiece is established and its multi-mode natural frequency is obtained by finite element model (FEM) method. It is found that the dynamic response of the spindle rotor determines machining accuracy in the turning process and shows that the first several modes in the frequency range within 2000 Hz are the main responses of the system, which can be effectively captured by the ORS. Especially, the spring stiffness is calibrated based on the FEM results and the accuracy of the dynamic modal responses of this model are verified when the mass of the workpiece decreases during the turning process. According to the results, two frequency bands are advocated for ORS based online monitoring of tool wear conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kim, J., Lee, S., Chun, H., Lee, C.B.: Compact curved-edge displacement sensor-embedded spindle system for machining process monitoring. J. Manuf. Process. 64, 1255–1260 (2021). https://doi.org/10.1016/j.jmapro.2021.02.056

  2. Wu Di, Q.S.: Dynamic analysis for spindle assembly of CK6130CNC Lathe. Mach. Des. Manuf. 9, 158–161 (2016). https://doi.org/10.19356/j.cnki.1001-3997.2016.09.042

  3. Abele, E., Altintas, Y., Brecher, C.: Machine tool spindle units. CIRP Ann. - Manuf. Technol. 59(2), 781–802 (2010). https://doi.org/10.1016/j.cirp.2010.05.002

    Article  Google Scholar 

  4. Hong Jie, Z.Z., Han, J.: Analysis of dynamic characteristics of rotor system by integral transfer coefficient method. J. Beijing Univ. Aeronaut. Astronaut. 28, 1–4 (2002)

    Google Scholar 

  5. Subbarao, R., Dey, R.: Selection of lathe spindle material based on static and dynamic analyses using finite element method. Mater. Today Proc. 22, 1652–1663 (2019). https://doi.org/10.1016/j.matpr.2020.02.182

    Article  Google Scholar 

  6. Ritou, M., Rabréau, C., Le Loch, S., Furet, B., Dumur, D.: Influence of spindle condition on the dynamic behavior. CIRP Ann. 67(1), 419–422 (2018). https://doi.org/10.1016/j.cirp.2018.03.007

    Article  Google Scholar 

  7. Schmitz, T.: Modal interactions for spindle, holders, and tools. Proc. Manuf. 48, 457–465 (2020). https://doi.org/10.1016/j.promfg.2020.05.069

    Article  Google Scholar 

  8. Qian Shicai, Q.W., Gao, H.: Establishment and performance analysis of rigid—flexible coupling system of machine tool spindle based on ADAMS. J. Sichuan Mil. Eng. 6, 69–70 (2012)

    Google Scholar 

  9. Vafaei, S., Rahnejat, H., Aini, R.: Vibration monitoring of high speed spindles using spectral analysis techniques. Int. J. Mach. Tools Manuf. 42(11), 1223–1234 (2002). https://doi.org/10.1016/S0890-6955(02)00049-4

    Article  Google Scholar 

  10. Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70(1), 223–287 (1998). https://doi.org/10.1103/revmodphys.70.223

    Article  Google Scholar 

  11. Cao, Y., Altintas, Y.: Modeling of spindle-bearing and machine tool systems for virtual simulation of milling operations. Int. J. Mach. Tools Manuf. 47(9), 1342–1350 (2007). https://doi.org/10.1016/j.ijmachtools.2006.08.006

    Article  Google Scholar 

  12. Ozturk, E., Kumar, U., Turner, S., Schmitz, T.: Investigation of spindle bearing preload on dynamics and stability limit in milling. CIRP Ann. - Manuf. Technol. 61(1), 343–346 (2012). https://doi.org/10.1016/j.cirp.2012.03.134

    Article  Google Scholar 

  13. Fedorynenko, D., Kirigaya, R., Nakao, Y.: Dynamic characteristics of spindle with water-lubricated hydrostatic bearings for ultra-precision machine tools. Precis. Eng. 63, 187–196 (2020). https://doi.org/10.1016/j.precisioneng.2020.02.003

    Article  Google Scholar 

  14. Xu, K., Wang, B., Zhao, Z., Zhao, F., Kong, X., Wen, B.: The influence of rolling bearing parameters on the nonlinear dynamic response and cutting stability of high-speed spindle systems. Mech. Syst. Signal Process. 136, 106448 (2020). https://doi.org/10.1016/j.ymssp.2019.106448

    Article  Google Scholar 

  15. Yuan Lin, C., Pin Hung, J., Liang Lo, T.: Effect of preload of linear guides on dynamic characteristics of a vertical columnspindle system. Int. J. Mach. Tools Manuf. 50(8), 741–746 (2010). https://doi.org/10.1016/j.ijmachtools.2010.04.002

  16. Cao, H., Li, B., He, Z.: Chatter stability of milling with speed-varying dynamics of spindles. Int. J. Mach. Tools Manuf. 52(1), 50–58 (2012). https://doi.org/10.1016/j.ijmachtools.2011.09.004

    Article  Google Scholar 

  17. Eynian, M.: Vibration frequencies in stable and unstable milling. Int. J. Mach. Tools Manuf. 90, 44–49 (2015). https://doi.org/10.1016/j.ijmachtools.2014.12.004

    Article  Google Scholar 

  18. Liu, J., Li, F., Yong, J., Lai, T., Zhang, P.: Investigation of spindle-tool assembly dynamics for optical grinding motorized spindles. Optik (Stuttg) 216, 164836 (2020). https://doi.org/10.1016/j.ijleo.2020.164836

  19. Miao, H., Li, C., Wang, C., Xu, M., Zhang, Y.: The vibration analysis of the CNC vertical milling machine spindle system considering nonlinear and nonsmooth bearing restoring force. Mech. Syst. Signal Process. 161, 107970 (2021). https://doi.org/10.1016/j.ymssp.2021.107970

    Article  Google Scholar 

  20. Lin, C.W., Lin, Y.K., Chu, C.H.: Dynamic models and design of spindle-bearing systems of machine tools: a review. Int. J. Precis. Eng. Manuf. 14(3), 513–521 (2013). https://doi.org/10.1007/s12541-013-0070-6

    Article  Google Scholar 

  21. Murgayya, S.B., Suresh, H.N., Madhusudhan, N., SarvanaBhavan, D.: Effective rotordynamics analysis of high speed machine tool spindle—bearing system. Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2021.05.359

  22. Zhang Yimin, Y.Z., Wang, H., Cao, H.: FEM-based frequency reliability analysis of spindle system of CNC lathes. J. Northeast. Univ. 36, 1155–1159 (2015)

    Google Scholar 

  23. Turkes, E., Orak, S., Neşeli, S., Sahin, M., Selvi, S.: Modelling of dynamic cutting force coefficients and chatter stability dependent on shear angle oscillation. Int. J. Adv. Manuf. Technol. 91(1–4), 679–686 (2017). https://doi.org/10.1007/s00170-016-9782-y

    Article  Google Scholar 

  24. Jiang Wei, L.B., Zhou, Y.: Analysis and calculation on rigidity and friction moment of paired angular contact bearings. Bearing 8, 31–35 (2006)

    Google Scholar 

  25. NSK bearing relpacement guide

    Google Scholar 

  26. Wijnant, Y.H., Wensing, J.A.: The influence of lubrication on the dynamic behaviour of ball bearings. J. Sound Vib. 4(3), 579–596 (1999). https://doi.org/10.1080/10402009208982155

  27. Lynagh, N., Rahnejat, H., Ebrahimi, M., Aini, R.: Bearing induced vibration in precision high speed routing spindles. Int. J. Mach. Tools Manuf. 40(4), 561–577 (2000). https://doi.org/10.1016/S0890-6955(99)00076-0

    Article  Google Scholar 

  28. Time-Varying Stiffness Characteristics of Roller Bearing Influenced by Thermal Behaviour Due to Surface Frictions and Different Lubricant Oil Temperatures

    Google Scholar 

  29. Rao, S.S.: Vibration of Continuous Systems (2007)

    Google Scholar 

  30. Ghani, J.A., Rizal, M., Nuawi, M.Z., Ghazali, M.J., Haron, C.H.C.: Monitoring online cutting tool wear using low-cost technique and user-friendly GUI. Wear 271(9–10), 2619–2624 (2011). https://doi.org/10.1016/j.wear.2011.01.038

    Article  Google Scholar 

  31. Chun Li, A.D.B., Li, B., Gu, L., Feng, G., Gu, F.: Online monitoring of a shaft turning process based on vibration signals from on-rotor sensor. In: 2020 3rd World Conference on Mechanical Engineering Intelligence Manufacturing, pp. 402–407 (2020). https://doi.org/10.1109/WCMEIM52463.2020.00091

  32. Li, C., et al.: Tool Condition Monitoring based on Vibration Signal from an On-Rotor Sensor in CNC Turning Process, no. Cm (2021)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the 2020 Guangdong Province Scientific Research Platform (No. 2020KTSCX188), the Beijing Municipal Science and Technology Project (No. Z201100008320004) and the National Natural Science Foundation of China (No. 2018A030313418).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengshou Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, C. et al. (2023). Modelling the Dynamics of a CNC Spindle for Tool Condition Identification Based on On-Rotor Sensing. In: Zhang, H., Feng, G., Wang, H., Gu, F., Sinha, J.K. (eds) Proceedings of IncoME-VI and TEPEN 2021. Mechanisms and Machine Science, vol 117. Springer, Cham. https://doi.org/10.1007/978-3-030-99075-6_84

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99075-6_84

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99074-9

  • Online ISBN: 978-3-030-99075-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics