Skip to main content

Data Analysis for Predictive Maintenance Using Time Series and Deep Learning Models—A Case Study in a Pulp Paper Industry

  • Conference paper
  • First Online:
Proceedings of IncoME-VI and TEPEN 2021

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 117))

Abstract

Predictive maintenance is fundamental for modern industries, in order to improve the physical assets availability, decision making and rationalize costs. That requires deployment of sensor networks, data storage and development of data treatment methods that can satisfy the quality required in the forecasting models. The present paper describes a case study where data collected in an industrial pulp paper press was pre-processed and used to predict future behavior, aiming to anticipate potential failures, optimize predictive maintenance and physical assets availability. The data were processed and analyzed, outliers identified and treated. Time series models were used to predict short-term future behavior. The results show that it is possible to predict future values up to ten days in advance with good accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pais, E., Farinha, J.T., Cardoso, A.J.M., Raposo, H.: Optimizing the life cycle of physical assets—a review. WSEAS Trans. Syst. Control 15, 417–430 (2020). https://doi.org/10.37394/23203.2020.15.42

    Article  Google Scholar 

  2. Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology. ACM SIGMOD Rec. 26(1), 65–74 (1997). https://doi.org/10.1145/248603.248616

    Article  Google Scholar 

  3. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: The KDD process for extracting useful knowledge from volumes of data. Commun. ACM 39(11), 27–34 (1996). https://doi.org/10.1145/240455.240464

    Article  Google Scholar 

  4. Prado, L.O., Ribeiro, P.F., Duque, C.A., Abdel Aleem, S.H.E.: Chapter 19—Modeling and processing of smart grids big data: study case of a university research building. In: Abdel Aleem, S.H.E., Abdelaziz, A.Y., Zobaa, A.F., Bansal, R. (Eds.) Decision Making Applications in Modern Power Systems, pp. 507–538. Academic Press (2020)

    Google Scholar 

  5. Martins, A.B., Torres Farinha, J., Marques Cardoso, A.: Calibration and certification of industrial sensors—a global review. WSEAS Trans. Syst. Control 15, 394–416 (2020). https://doi.org/10.37394/23203.2020.15.41

  6. Gong, Z., Wang, W., Ku, W.-S.: Adversarial and clean data are not twins. ArXiv170404960 Cs, Apr. 2017, Accessed: Mar. 02, 2021. [Online]. Available: http://arxiv.org/abs/1704.04960

  7. Veit, A., Alldrin, N., Chechik, G., Krasin, I., Gupta, A., Belongie, S.: Learning From Noisy Large-Scale Datasets With Minimal Supervision, pp. 839–847, Accessed: Mar. 02, 2021. [Online] (2017). Available: https://openaccess.thecvf.com/content_cvpr_2017/html/Veit_Learning_From_Noisy_CVPR_2017_paper.html

  8. Plutowski, M., White, H.: Selecting concise training sets from clean data. IEEE Trans. Neural Netw. 4(2), 305–318 (1993). https://doi.org/10.1109/72.207618

    Article  Google Scholar 

  9. Zhang, Z.: Neural networks: further insights into error function, generalized weights and others. Ann. Transl. Med. 4(16) (2016). https://doi.org/10.21037/atm.2016.05.37

  10. Siami-Namini, S., Namin, A.S.: Forecasting economics and financial time series: ARIMA vs. LSTM, ArXiv180306386 Cs Q-Fin Stat, Mar. 2018, Accessed: Mar. 09, 2021. [Online]. Available: http://arxiv.org/abs/1803.06386

  11. Mateus, B., Farinha, J.T., Cardoso, A.M.: Production Optimization Versus Asset Availability—A Review, vol. 15, p. 13 (2020). https://doi.org/10.37394/23203.2020.15.33

  12. Kaastra, I., Boyd, M.: Designing a neural network for forecasting financial and economic time series. Neurocomputing 10(3), 215–236 (1996). https://doi.org/10.1016/0925-2312(95)00039-9

    Article  Google Scholar 

  13. Hecht-Nielsen, R.: Neurocomputer applications. In: Neural Computers, pp. 445–453, Berlin. https://doi.org/10.1007/978-3-642-83740-1_45

  14. Jimenez, V.J., Bouhmala, N., Gausdal, A.H.: Developing a predictive maintenance model for vessel machinery. J. Ocean Eng. Sci. 5(4), 358–386 (2020). https://doi.org/10.1016/j.joes.2020.03.003

    Article  Google Scholar 

  15. Rodrigues, J., Cost, I., Farinha, J.T., Mendes, M., Margalho, L.: Predicting motor oil condition using artificial neural networks and principal component analysis. Eksploat. Niezawodn. - Maint. Reliab. 22(3), 440–448 (2020). https://doi.org/10.17531/ein.2020.3.6

    Article  Google Scholar 

  16. Daniyan, I., Mpofu, K., Oyesola, M., Ramatsetse, B., Adeodu, A.: Artificial intelligence for predictive maintenance in the railcar learning factories. Proc. Manuf. 45, 13–18 (2020). https://doi.org/10.1016/j.promfg.2020.04.032

    Article  Google Scholar 

  17. Ayvaz, S., Alpay, K.: Predictive maintenance system for production lines in manufacturing: a machine learning approach using IoT data in real-time. Expert Syst. Appl. 173, 114598 (2021). https://doi.org/10.1016/j.eswa.2021.114598

    Article  Google Scholar 

  18. Huang, X., Zanni-Merk, C., Crémilleux, B.: Enhancing Deep Learning with semantics: an application to manufacturing time series analysis. Proc. Comput. Sci. 159, 437–446 (2019). https://doi.org/10.1016/j.procs.2019.09.198

    Article  Google Scholar 

  19. Nti, I.K., Adekoya, A.F., Weyori, B.A.: A novel multi-source information-fusion predictive framework based on deep neural networks for accuracy enhancement in stock market prediction. J. Big Data 8(1) (2021). https://doi.org/10.1186/s40537-020-00400-y

  20. Liu, M.-D., Ding, L., Bai, Y.-L.: Application of hybrid model based on empirical mode decomposition, novel recurrent neural networks and the ARIMA to wind speed prediction. Energy Convers. Manag. 233, 113917 (2021). https://doi.org/10.1016/j.enconman.2021.113917

    Article  Google Scholar 

  21. Aydin, O., Guldamlasioglu, S: Using LSTM Networks to Predict Engine Condition on Large Scale Data Processing Framework, pp. 281–285 (2017). https://doi.org/10.1109/ICEEE2.2017.7935834

  22. Khandelwal, I., Adhikari, R., Verma, G.: Time series forecasting using hybrid ARIMA and ANN models based on DWT decomposition. Proc. Comput. Sci. 48, 173–179 (2015). https://doi.org/10.1016/j.procs.2015.04.167

    Article  Google Scholar 

  23. Yip, H., Fan, H., Chiang, Y.: Predicting the maintenance cost of construction equipment: comparison between general regression neural network and Box-Jenkins time series models. Autom. Constr. 38, 30–38 (2014). https://doi.org/10.1016/j.autcon.2013.10.024

    Article  Google Scholar 

  24. Gui, Z., et al.: LSI-LSTM: an attention-aware LSTM for real-time driving destination prediction by considering location semantics and location importance of trajectory points. Neurocomputing 440, 72–88 (2021). https://doi.org/10.1016/j.neucom.2021.01.067

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowvska-Curie grant agreement 871284 project SSHARE and the European Regional Development Fund (ERDF) through the Operational Programme for Competitiveness and Internationalization (COMPETE 2020), under Project POCI-01-0145-FEDER-029494, and by National Funds through the FCT—Portuguese Foundation for Science and Technology, under Projects PTDC/EEI-EEE/29494/2017, UIDB/04131/2020, and UIDP/04131/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balduíno Mateus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mateus, B., Mendes, M., Farinha, J.T., Martins, A.B., Cardoso, A.M. (2023). Data Analysis for Predictive Maintenance Using Time Series and Deep Learning Models—A Case Study in a Pulp Paper Industry. In: Zhang, H., Feng, G., Wang, H., Gu, F., Sinha, J.K. (eds) Proceedings of IncoME-VI and TEPEN 2021. Mechanisms and Machine Science, vol 117. Springer, Cham. https://doi.org/10.1007/978-3-030-99075-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99075-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99074-9

  • Online ISBN: 978-3-030-99075-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics