Skip to main content

Review of Using Operational Modal Analysis for Condition Monitoring

  • Conference paper
  • First Online:
Proceedings of IncoME-VI and TEPEN 2021

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 117))

Abstract

Modal analysis is critical to better understand structural dynamic vibration characteristics by extracting system’s natural frequencies, damping ratios and mode shapes. Modal analysis has been widely used to structure optimization in the design stage, damage detection and structural health monitoring or condition monitoring. According to whether need artificial exaction, the modal analysis techniques can be categorized as experimental modal analysis and operational modal analysis. Conventional experimental modal analysis has to measure the excitation and corresponding response in the meantime, while operational modal analysis measure system’s response only during normal operating condition. Therefore, operational modal analysis also called output-only modal analysis methods, which have developed dramatically in recent decades because it is promising as means to achieve structural online monitoring, which is highly desirable for critical mechanical system, important buildings and bridges, etc. This paper made a brief review of the development of popular operational modal analysis techniques and their applications in condition monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bin Zahid, F., Ong, Z.C., Khoom S,Y.: A review of operational modal analysis techniques for in-service modal identification. J. Braz. Soc. Mech. Sci. Eng. 42(8), Jul. 2020, Art. no. 8 (2020). https://doi.org/10.1007/s40430-020-02470-8

  2. Peeters, B., De Roeck, G.: Stochastic system identification for operational modal analysis: a review. J. Dyn. Syst. Meas. Control-Trans. Asme 123(4), 659–667 (2001). https://doi.org/10.1115/1.1410370

    Article  Google Scholar 

  3. Brincker, R., Zhang, L.M., Andersen, P.: Modal identification of output-only systems using frequency domain decomposition. Smart Mater. Struct. 10(3), 441–445 (2001). https://doi.org/10.1088/0964-1726/10/3/303

    Article  Google Scholar 

  4. Jacobsen, N.-J., Andersen, P., Brincker, R.: Using EFDD as a robust technique to deterministic excitation in operational modal analysis. In: 2nd International Operational Modal Analysis Conference, IOMAC 2007, April 30, 2007 - May 2, 2007, Copenhagen, Denmark, 2007, p. Aarhus School of Engineering; Bruel and Kjaer

    Google Scholar 

  5. Zhang, L., Wang, T., Tamura, Y.: A frequency-spatial domain decomposition (FSDD) method for operational modal analysis. Mech. Syst. Signal Process. 24(5), 1227–1239 (2010). https://doi.org/10.1016/j.ymssp.2009.10.024

    Article  Google Scholar 

  6. Van der Auweraer, H., Guillaume, P., Verboven, P., Vanlanduit, S.: Application of a fast-stabilizing frequency domain parameter estimation method. J. Dyn. Syst. Meas. Control-Trans. Asme 123(4), 651–658 (2001). https://doi.org/10.1115/1.1410369

    Article  Google Scholar 

  7. Peeters, B., Van der Auweraer, H., Guillaume, P., Leuridan, J.: The PolyMAX frequency-domain method: a new standard for modal parameter estimation? Shock Vib. 11(3–4), 395–409 (2004). https://doi.org/10.1155/2004/523692

    Article  Google Scholar 

  8. Peeters, B., El-kafafy, M., Guillaume, P.: The new PolyMAX Plus method: confident modal parameter estimation even in very noisy cases, pp. 17–19. Belgium, Leuven (2012)

    Google Scholar 

  9. Ibrahim, S.: Random decrement technique for modal identification of structures. J. Spacecr. Rockets 14, 696 (1977). https://doi.org/10.2514/3.57251

    Article  Google Scholar 

  10. Juang, J.-N., Pappa, R.S.: An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guid. Control Dyn. 8(5), 620–627 (1985). https://doi.org/10.2514/3.20031

    Article  MATH  Google Scholar 

  11. James, G., Carne, T., Laufer, J.: The natural excitation technique (NExT) for modal parameter extraction from operating structures. J. Anal. Exp. Modal Anal. 10 (1995)

    Google Scholar 

  12. Peeters, B., de Roeck, G.: Reference-based stochastic subspace identification for output-only modal analysis. Mech. Syst. Signal Process. 13(6), 855–878 (1999). https://doi.org/10.1006/mssp.1999.1249

    Article  Google Scholar 

  13. Au, S.-K., Zhang, F.-L., Ni, Y.-C.: Bayesian operational modal analysis: theory, computation, practice. Comput. Struct. 126, 3–14 (2013). https://doi.org/10.1016/j.compstruc.2012.12.015

    Article  Google Scholar 

  14. Zhang, F.-L., Au, S.-K., Lam, H.-F.: Assessing uncertainty in operational modal analysis incorporating multiple setups using a Bayesian approach. Struct. Control Health Monit. 22(3), 395–416 (2015). https://doi.org/10.1002/stc.1679

    Article  Google Scholar 

  15. Zhu, Z., Au, S.-K., Li, B., Xie, Y.-L.: Bayesian operational modal analysis with multiple setups and multiple (possibly close) modes. Mech. Syst. Signal Process. 150, 107261 (2021). https://doi.org/10.1016/j.ymssp.2020.107261

    Article  Google Scholar 

  16. Devriendt, C., Guillaume, P.: The use of transmissibility measurements in output-only modal analysis. Mech. Syst. Signal Process. 21(7), 2689–2696 (2007). https://doi.org/10.1016/j.ymssp.2007.02.008

    Article  Google Scholar 

  17. Devriendt, C., De Sitter, G., Guillaume, P.: An operational modal analysis approach based on parametrically identified multivariable transmissibilities. Mech. Syst. Signal Process. 24(5), 1250–1259 (2010). https://doi.org/10.1016/j.ymssp.2009.02.015

    Article  Google Scholar 

  18. Yan, W.-J., Ren, W.-X.: Operational modal parameter identification from power spectrum density transmissibility. Comput.-Aided Civ. Infrastruct. Eng. 27(3), 202–217 (2012). https://doi.org/10.1111/j.1467-8667.2011.00735.x

  19. Araujo, I.G., Laier, J.E.: Operational modal analysis using SVD of power spectral density transmissibility matrices. Mech. Syst. Signal Process. 46(1), 129–145 (2014). https://doi.org/10.1016/j.ymssp.2014.01.001

    Article  Google Scholar 

  20. Yan, W.-J., Ren, W.-X.: An enhanced power spectral density transmissibility (EPSDT) approach for operational modal analysis: theoretical and experimental investigation. Eng. Struct. 102, 108–119 (2015). https://doi.org/10.1016/j.engstruct.2015.08.009

    Article  Google Scholar 

  21. Cao, S., Ouyang, H., Cheng, L.: Baseline-free adaptive damage localization of plate-type structures by using robust PCA and Gaussian smoothing. Mech. Syst. Signal Process. 122, 232–246 (2019). https://doi.org/10.1016/j.ymssp.2018.12.017

    Article  Google Scholar 

  22. Cao, S., Ouyang, H., Cheng, L.: Baseline-free multidamage identification in plate-like structures by using multiscale approach and low-rank modelling. Struct. Control Health Monit. 26(2), e2293 (2019). https://doi.org/10.1002/stc.2293

    Article  Google Scholar 

  23. Friis, T., Tarpø, M., Katsanos, E.I., Brincker, R.: Best linear approximation of nonlinear and nonstationary systems using operational modal analysis. Mech. Syst. Signal Process. 152, 107395 (2021). https://doi.org/10.1016/j.ymssp.2020.107395

    Article  Google Scholar 

  24. Liu, F., Wu, J., Gu, F., Ball, A.D.: An introduction of a robust OMA method: CoS-SSI and its performance evaluation through the simulation and a case study. Shock Vib. 2019, 6581516 (2019). https://doi.org/10.1155/2019/6581516

    Article  Google Scholar 

  25. Liu, F., Zhang, H., He, X., Zhao, Y., Gu, F., Ball, A.D.: Correlation signal subset-based stochastic subspace identification for an online identification of railway vehicle suspension systems. Veh. Syst. Dyn. 58(4), 569–589 (2020). https://doi.org/10.1080/00423114.2019.1589534

    Article  Google Scholar 

  26. Agneni, A., Coppotelli, G., Grappasonni, C.: A method for the harmonic removal in operational modal analysis of rotating blades. Mech. Syst. Signal Process. 27, 604–618 (2012). https://doi.org/10.1016/j.ymssp.2011.09.013

    Article  Google Scholar 

  27. Storti, G., Machado, T.: The use of operational modal analysis in the process of modal parameters identification in a rotating machine supported by roller bearings. J. Mech. Sci. Technol. 35(2), Art. no. 2 (2021). https://doi.org/10.1007/s12206-021-0105-3

  28. Ramos, L.F., Marques, L., Lourenco, P.B., De Roeck, G., Campos-Costa, A., Roque, J.: Monitoring historical masonry structures with operational modal analysis: two case studies. Mech. Syst. Signal Process. 24(5), 1291–1305 (2010). https://doi.org/10.1016/j.ymssp.2010.01.011

    Article  Google Scholar 

  29. Gentile, C., Saisi, A., Cabboi, A.: Structural identification of a masonry tower based on operational modal analysis. Int. J. Archit. Herit. 9(2), Art. no. 2 (2015). https://doi.org/10.1080/15583058.2014.951792

  30. Whelan, M.J., Gangone, M.V., Janoyan, K.D., Jha, R.: Operational modal analysis of a multi-span skew bridge using real-time wireless sensor networks. J. Vib. Control 17(13), Art. no. 13 (2011). https://doi.org/10.1177/1077546310373058.

  31. Cross, E.J., Koo, K.Y., Brownjohn, J.M.W., Worden, K.: Long-term monitoring and data analysis of the tamar bridge. Mech. Syst. Signal Process. 35(1–2), Art. no. 1–2 (2013). https://doi.org/10.1016/j.ymssp.2012.08.026

  32. Reynders, E., Maes, K., Lombaert, G., De Roeck, G.: Uncertainty quantification in operational modal analysis with stochastic subspace identification: validation and applications. Mech. Syst. Signal Process. 66–67, 13–30 (2016). https://doi.org/10.1016/j.ymssp.2015.04.018

    Article  Google Scholar 

  33. Chauhan, S., Hansen, M., Tcherniak, D.: Application of operational modal analysis and blind source separation/independent component analysis techniques to wind turbines. Conf. Proc. Soc. Exp. Mech. Ser. (2009)

    Google Scholar 

  34. Chauhan, S., et al.: Operational modal analysis of operating wind turbines: application to measured data. In: Conference proceedings of the society for experimental mechanics series, vol. 5, pp. 65–81 (2011)

    Google Scholar 

  35. Devriendt, C., Magalhaes, F., Weijtjens, W., De Sitter, G., Cunha, A., Guillaume, P.: Structural health monitoring of offshore wind turbines using automated operational modal analysis. Struct. Health Monit.- Int. J. 13(6), Art. no. 6 (2014). https://doi.org/10.1177/1475921714556568

  36. Hansen, M.H., Thomsen, K., Fuglsang, P., Knudsen, T.: Two methods for estimating aeroelastic damping of operational wind turbine modes from experiments. Wind Energy 9(1–2), Art. no. 1–2 (2006). https://doi.org/10.1002/we.187

  37. Hermans, L., Van der Auweraer, H.: Modal testing and analysis of structures under operational conditions: industrial applications. Mech. Syst. Signal Process. 13(2), Art. no. 2 (1999). https://doi.org/10.1006/mssp.1998.1211

  38. Qi, K., He, Z., Li, Z., Zi, Y., Chen, X.: Vibration based operational modal analysis of rotor systems. Measurement 41(7), Art. no. 7 (2008). https://doi.org/10.1016/j.measurement.2007.11.009

  39. Pierro, E., Mucchi, E., Soria, L., Vecchio, A.: On the vibro-acoustical operational modal analysis of a helicopter cabin. Mech. Syst. Signal Process. 23(4), Art. no. 4 (2009). https://doi.org/10.1016/j.ymssp.2008.10.009

  40. Dollon, Q., Antoni, J., Tahan, A., Gagnon, M., Monette, C.: Operational modal analysis of hydroelectric turbines using an order based likelihood approach. Renew. Energy 165, 799–811 (2021). https://doi.org/10.1016/j.renene.2020.11.086

    Article  Google Scholar 

  41. Rahman, M.S., Lau, D.T.: A comparative study of system identification techniques under ambient vibration. Top. Dyn. Civ. Struct. 4, 145–154 (2013). https://doi.org/10.1007/978-1-4614-6555-3_17

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Tianjin Natural Science Foundation of China (Grant No.: 18JCYBJC95200), Science & Technology Pillar Program of Tianjin (Grant No.:19YFZCSF01150) and Innovation cultivation Foundation 19-163-12-ZT-006-007-06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, F. et al. (2023). Review of Using Operational Modal Analysis for Condition Monitoring. In: Zhang, H., Feng, G., Wang, H., Gu, F., Sinha, J.K. (eds) Proceedings of IncoME-VI and TEPEN 2021. Mechanisms and Machine Science, vol 117. Springer, Cham. https://doi.org/10.1007/978-3-030-99075-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99075-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99074-9

  • Online ISBN: 978-3-030-99075-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics