Skip to main content

Accumulation of Volume Electric Charge in Ferrites Under Electron Irradiation

  • Conference paper
  • First Online:
Recent Developments in the Field of Non-Destructive Testing, Safety and Materials Science (ICMTNT 2021)

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 433))

  • 175 Accesses

Abstract

The study investigates the effect of the flow of charged particles on sintering of lithium-titanium ferrite ceramics under a combined effect of high temperatures and powerful radiation fluxes. For radiation-thermal sintering, the pulsed electron accelerator ILU-6 was used. It was established that the charge accumulation in non-sintered and as-sintered samples of ferrite ceramics under radiation-thermal effects is insignificant. The electric field strength in the samples does not exceed 103 V cm−1 at room temperature, it decreases when temperature grows, and at T = 600 °C it is less than 1 V cm−1. The electric field of the volume charge virtually does not affect the passage of injected electrons in samples and physicochemical processes of their sintering cannot provide the effect of radiation intensification of the compaction of powder materials during radiation-thermal sintering. Moreover, the influence of the volume charge electric field accumulated in ferrite upon electron beam irradiation on the injected electrons parameters was not found. No violation of the continuity of sintered ferrite due to spontaneous electrical discharges during radiation electrization was established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Inoue, A., Kong, F.: Soft magnetic materials, reference module in materials science and materials engineering, Elsevier. (2020). https://doi.org/10.1016/B978-0-12-803581-8.11725-4

  2. Dmitriev, M.V., Letyuk, L.M., Shipko, M.N.: Study of oxygen diffusion in the surface layers of Mn-Zn ferrites. Tech. Phys. 27, 338–339 (1982)

    Google Scholar 

  3. Letyuk, L.M.: Recrystallization of ferrites and its effect on the processes of microstructure formation in ferrospinels. Sov. Powder Metall. Met. Ceram. 19(5), 359–364 (1980)

    Article  Google Scholar 

  4. Zinovik, M.A., Zinovik, E.V.: Ferrites with rectangular and square hysteresis loops. Powder Metall. Met. Ceram. 44, 66–74 (2005)

    Article  Google Scholar 

  5. Xie, F., Chen, Y., Bai, M., Wang, P.: Co-substituted LiZnTiBi ferrite with equivalent permeability and permittivity for high-frequency miniaturized antenna application. Ceram. Int. 45, 17915–17919 (2019)

    Article  Google Scholar 

  6. Xu, F., Shi, X., Liao, Y., Li, J., Hu, J.: Investigation of grain growth and magnetic properties of low-sintered LiZnTi ferrite-ceramics. Ceram. Int. 46, 14669–14673 (2020)

    Article  Google Scholar 

  7. Surzhikov, A.P., Lysenko, E.N., Vasendina, E.A., Sokolovskii, A.N., Vlasov, V.A., Pritulov, A.M.: Thermogravimetric investigation of the effect of annealing conditions on the soft ferrite phase homogeneity. J. Therm. Anal. Calorim. 104(2), 613–617 (2011)

    Article  Google Scholar 

  8. Guo, J., Zhang, H., He, Z., Li, S., Li, Z.: Electrical properties and temperature sensitivity of Mo-modified MnFe2O4 ceramics for application of NTC thermistors. J. Mater. Sci. Mater. Electron. 29, 2491–2499 (2018)

    Article  Google Scholar 

  9. Zahir, R., Chowdhury, F.-U.-Z., Uddin, M.M., Hakim, M.A.: Structural, magnetic and electrical characterization of Cd substituted Mg ferrites synthesized by double sintering technique. J. Magn. Magn. Mater. 410, 55–62 (2016)

    Article  Google Scholar 

  10. Manjura, H.S., Abdul, H.M., Mamun, Al.: Study of the bulk magnetic and electrical properties of MgFe2O4 synthesized by chemical method. Mater. Sci. Appl. 2, 1564–1569 (2011)

    Google Scholar 

  11. Surzhikov, A.P., Galtseva, O.V., Vasendina, E.A., Vlasov, V.A., Nikolaev, E.V.: Processing line for industrial radiation-thermal synthesis of doped lithium ferrite powders. IOP Conf. Ser. Mater. Sci. Eng. 110(1), 012002 (2016)

    Google Scholar 

  12. Surzhikov, A.P., Frangulyan, T.S., Ghyngazov, S.A., Lysenko, E.N., Galtseva, O.V.: Physics of magnetic phenomena: investigation of electroconductivity of lithium pentaferrite. Russ. Phys. J. 49(5), 506–510 (2006)

    Article  Google Scholar 

  13. Yurov, V.M., Baltabekov, A.S., Laurinas, V.C., Guchenko, S.A.: Dimensional effects and surface energy of ferroelectric crystals. Eurasian Phys. Tech. J. 16(1), 18–23 (2019)

    Article  Google Scholar 

  14. Zhuravlev, V.A., Naiden, E.P., Minin, R.V., Itin, V.I., Suslyaev, V.I., Korovin, E.Yu.: Radiation-thermal synthesis of W-type hexaferrites. IOP Conf. Ser. Mater. Sci. Eng. 81, 012003 (2015)

    Google Scholar 

  15. Kostishyn, V., Isaev, I., Scherbakov, S., Nalogin, A., Belokon, E., Bryazgin, A.: Obtaining anisotropic hexaferrites for the base layers of microstrip SHF devices by the radiation-thermal sintering. East. Eur. J. Enterp. Technol. 5, 32–39 (2016)

    Google Scholar 

  16. Kostishin, V.G., Andreev, V.G., Korovushkin, V.V., Chitanov, D.N., Yudanov, N.A., Morchenko, A.T., Nikolaev, A.N.: Preparation of 2000NN ferrite ceramics by a complete and a short radiation-enhanced thermal sintering process. Inorg. Mater. 50, 1317 (2014)

    Article  Google Scholar 

  17. Malyshev, A.V., Lysenko, E.N., Vlasov, V.A., Nikolaeva, S.A.: Electromagnetic properties of Li0.4Fe2.4Zn0.2O4 ferrite sintered by continuous electron beam heating. Ceram. Int. 42, 16180–16183 (2016)

    Google Scholar 

  18. Neronov, V.A., Voronin, A.P., Tatarintseva, M.I., Melekhova, T.E., Auslender, V.L.: Sintering under a high-power electron beam. J. Less Common Met. 117, 391–394 (1986)

    Article  Google Scholar 

  19. Naiden, E.P., Zhuravlev, V.A., Minin, R.V., Suslyaev, V.I., Itin, V.I., Korovin, E.Yu.: Structural and magnetic properties of SHS-produced multiphase W-type hexaferrites: influence of radiation-thermal treatment. Int. J. Self Propag. High Temp. Synth. 24, 148–151 (2015)

    Article  Google Scholar 

  20. Ancharova, U.V., Mikhailenko, M.A., Tolochko, B.P., Lyakhov, N.Z., Korobeinikov, M.V., Bryazgin, A.A., Shtarklev, E.A.: Synthesis and staging of the phase formation for strontium ferrites in thermal and radiation thermal reactions. IOP Conf. Ser. Mater. Sci. Eng. 81, 012122 (2015)

    Google Scholar 

  21. Salimov, R.A., Cherepkov, V.G., Kuksanov, N.K., Kuznetzov, S.A.: The use of electron accelerators for radiation disinfestation of grain. Radiat. Phys. Chem. 57, 625–627 (2000)

    Article  Google Scholar 

  22. Surzhikov, A.P., Frangulyan, T.S., Ghyngazov, S.A., Koval, N.N.: Structural-phase transformations in near-surface layers of alumina-zirconium ceramics induced by low-energy high-current electron beams. Nucl. Instrum. Methods Phys. Res. Sect. B 267(7), 1072–1076 (2009)

    Article  Google Scholar 

  23. Stary, O., Malyshev, A.V., Lysenko, E.N., Petrova, A.: Formation of magnetic properties of ferrites during radiation-thermal sintering. Eurasian Phys. Tech. J. 17(2), 6–10 (2020)

    Article  Google Scholar 

  24. Surzhikov, A.P., Frangulyan, T.S., Ghyngazov, S.A., Vasil’ev, I.P., Chernyavskii, A.V.: Sintering of zirconia ceramics by intense high-energy electron beam. Ceram. Int. 42(12), 13888–13892 (2016)

    Article  Google Scholar 

  25. Nikolaev, E.V., Astafyev, A.L., Nikolaeva, S.A., Lysenko, E.N., Zeinidenov, A.K.: Investigation of electrical properties homogeneity of Li-Ti-Zn ferrite ceramics. Eurasian Phys. Tech. J. 17(1), 5–12 (2020)

    Article  Google Scholar 

  26. Gromov, V.V.: Electric charge in irradiated dielectrics, and their properties. Russ. Chem. Rev. 62(11), 991–1003 (1993)

    Article  Google Scholar 

  27. Boev, S.G.: Charge accumulation by insulators irradiated with electrons. Sov. Phys. J. 24(2), 143–150 (1981)

    Article  Google Scholar 

  28. Dyrkov, V.A., Evdokimov, O.B., Yagushkin, N.I.: Space-charge dynamics in dielectrics on irradiation with fast electrons. Radiat. Phys. Chem. 23(3), 331–340 (1984)

    Google Scholar 

  29. Bronshtein, I.M., Fraiman, B.S.: Secondary Electron Emission. Nauka, Moscow, Russia (1964)

    Google Scholar 

  30. Boev, S.G., Sigaev, G.I.: Generation of external electric fields by insulators as a result of electron irradiation at normal atmospheric pressure. Sov. Phys. J. 23(11), 968–972 (1980)

    Article  Google Scholar 

  31. Tyutnev, A.P., Saenko, V.S., Vannikov, A.V., Oskin, V.E.: Radiation induced dielectric effect in polymers. Phys. Status Solidi (a) 86(1), 363–374 (1984)

    Article  Google Scholar 

  32. Rozno, A.G., Gromov, V.V.: Acoustic probing: a new method of measuring the electrical charge and field in the volume of dielectrics. Bull. Acad. Sci. U.S.S.R. Phys. Ser. 50(3), 28–36 (1985)

    Google Scholar 

  33. Boev, S.G.: Kinetics of charge formation in electron-irradiated dielectrics. Sov. Surf. Eng. Appl. Electrochem. 2, 69–72 (1987)

    Google Scholar 

Download references

Acknowledgements

The research is funded by The Ministry of Science and Higher Education of the Russian Federation as part of the Science Program, Project FSWW-2020-0008. The authors are grateful to M.V. Korobeynikov (Budker Institute of Nuclear Physics, Novosibirsk) for radiation-thermal experiments using ILU accelerator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Lysenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Surzhikov, A., Lysenko, E., Starý, O. (2023). Accumulation of Volume Electric Charge in Ferrites Under Electron Irradiation. In: Lysenko, E., Rogachev, A., Starý, O. (eds) Recent Developments in the Field of Non-Destructive Testing, Safety and Materials Science. ICMTNT 2021. Studies in Systems, Decision and Control, vol 433. Springer, Cham. https://doi.org/10.1007/978-3-030-99060-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99060-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99059-6

  • Online ISBN: 978-3-030-99060-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics