Skip to main content

Energy Management Strategies in a Fuel Cell–Powered Aircraft

  • Chapter
  • First Online:
Fuel Cell and Hydrogen Technologies in Aviation

Part of the book series: Sustainable Aviation ((SA))

  • 1228 Accesses

Abstract

The addition of several power sources in an aircraft increases the complexity of the sizing and energy management problem while allowing a system redundancy that makes aircrafts safer. The optimization of the sizing and the energy management of hybrid electric aircraft powertrains can be accomplished using comprehensive mathematical models from the aircraft and its power sources, reducing the load of experimental activities that turn to be expensive and time-consuming. In this work, the authors apply an optimization method to obtain two optimized energy management strategies to be applied to two different types of all-electric aircraft: a general aviation powertrain and an electric vertical take-off and landing powertrain. These two aircrafts are designed to employ the same power sources configuration with a hydrogen-fueled fuel cell and a battery pack. The energy management optimization was performed to maximize the traveled distance while keeping the battery’s state of charge difference at a minimum, observing the power sources restrictions. In addition, for the second powertrain, the optimization of the power sources was performed. The analysis of the results shows that using the proposed method, the general aviation powertrain improves the traveled distance by 2.78%, reducing the equivalent energy consumption by 2.73%, and the electric vertical take-off and landing powertrain reduces the equivalent power consumption and guarantees the same battery’s state of charge at the start and at the end of the flight allowing a non-plugin operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A. García-Olivares, J. Solé, O. Osychenko, Transportation in a 100% renewable energy system, Energy Convers. Manag. 158 (2018) 266–285. https://doi.org/10.1016/J.ENCONMAN.2017.12.053.

    Article  Google Scholar 

  2. United Nations, Emissions Gap Emissions Gap Report 2020, 2020. https://www.unenvironment.org/interactive/emissions-gap-report/2019/.

  3. European Commission, Reducing emissions from aviation, Eur. Comm. (2018). https://ec.europa.eu/clima/eu-action/transport-emissions/reducing-emissions-aviation_en (accessed December 10, 2021).

  4. Airbus, Airbus studies fuel cell pods for future aircraft, Fuel Cells Bull. 2021 (2021) 6. https://doi.org/10.1016/S1464-2859(21)00018-3.

  5. C.E.D. Riboldi, Energy-optimal off-design power management for hybrid-electric aircraft, Aerosp. Sci. Technol. 95 (2019) 105507. https://doi.org/10.1016/j.ast.2019.105507.

    Article  Google Scholar 

  6. C.E.D. Riboldi, An optimal approach to the preliminary design of small hybrid-electric aircraft, Aerosp. Sci. Technol. 81 (2018) 14–31. https://doi.org/10.1016/j.ast.2018.07.042.

    Article  Google Scholar 

  7. G. Romeo, F. Borello, G. Correa, E. Cestino, ENFICA-FC: Design of transport aircraft powered by fuel cell; flight test of zero emission 2-seater aircraft powered by fuel cells fueled by hydrogen, Int. J. Hydrogen Energy. 38 (2013) 469–479. https://doi.org/10.1016/j.ijhydene.2012.09.064.

    Article  Google Scholar 

  8. D.P. Bertsekas, Nonlinear Programming, 3rd Editio, Athena Scientific, 2016. http://www.athenasc.com/nonlinbook.html.

  9. S.G. Johnson, The NLopt nonlinear-optimization package, (2008). https://github.com/stevengj/nlopt.

  10. P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M. Brett, J. Wilson, K.J. Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E. Larson, C.J. Carey, Ilhan Polat, Y. Feng, E.W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E.A. Quintero, C.R. Harris, A.M. Archibald, A.H. Ribeiro, F. Pedregosa, P. van Mulbregt, SciPy 1.0 Contributors, SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nat. Methods. 17 (2020) 261–272. https://doi.org/10.1038/s41592-019-0686-2.

    Article  Google Scholar 

  11. H. Rezk, A.M. Nassef, M.A. Abdelkareem, A.H. Alami, A. Fathy, Comparison among various energy management strategies for reducing hydrogen consumption in a hybrid fuel cell/supercapacitor/battery system, Int. J. Hydrogen Energy. 46 (2021) 6110–6126. https://doi.org/10.1016/j.ijhydene.2019.11.195.

    Article  Google Scholar 

  12. I.-S. Sorlei, N. Bizon, P. Thounthong, M. Varlam, E. Carcadea, M. Culcer, M. Iliescu, M. Raceanu, Fuel Cell Electric Vehicles—A Brief Review of Current Topologies and Energy Management Strategies, Energies. 14 (2021) 252. https://doi.org/10.3390/en14010252.

    Article  Google Scholar 

  13. T. Teng, X. Zhang, H. Dong, Q. Xue, A comprehensive review of energy management optimization strategies for fuel cell passenger vehicle, Int. J. Hydrogen Energy. (2020). https://doi.org/10.1016/J.IJHYDENE.2019.12.202.

  14. N. Bizon, Optimization Algorithms and Energy Management Strategies, in: 2020: pp. 57–105. https://doi.org/10.1007/978-3-030-40241-9_3.

  15. N. Bizon, Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained, Appl. Energy. 241 (2019) 444–460. https://doi.org/10.1016/j.apenergy.2019.03.026.

    Article  Google Scholar 

  16. Y. Zhou, A. Ravey, M.-C. Péra, A survey on driving prediction techniques for predictive energy management of plug-in hybrid electric vehicles, J. Power Sources. 412 (2019) 480–495. https://doi.org/10.1016/j.jpowsour.2018.11.085.

    Article  Google Scholar 

  17. M. Doff-Sotta, M. Cannon, M. Bacic, Optimal energy management for hybrid electric aircraft, IFAC-PapersOnLine. 53 (2020) 6043–6049. https://doi.org/10.1016/j.ifacol.2020.12.1672.

    Article  Google Scholar 

  18. J. Zhao, H.S. Ramadan, M. Becherif, Metaheuristic-based energy management strategies for fuel cell emergency power unit in electrical aircraft, Int. J. Hydrogen Energy. 44 (2019) 2390–2406. https://doi.org/10.1016/j.ijhydene.2018.07.131.

    Article  Google Scholar 

  19. S. Li, C. Gu, M. Xu, J. Li, P. Zhao, S. Cheng, Optimal power system design and energy management for more electric aircrafts, J. Power Sources. 512 (2021) 230473. https://doi.org/10.1016/j.jpowsour.2021.230473.

    Article  Google Scholar 

  20. G. Correa, F. Borello, M. Santarelli, Sensitivity analysis of stack power uncertainty in a PEMFC-based powertrain for aircraft application, Int. J. Hydrogen Energy. 40 (2015) 10354–10365. https://doi.org/10.1016/J.IJHYDENE.2015.05.133.

    Article  Google Scholar 

  21. G. Correa, M. Santarelli, F. Borello, E. Cestino, G. Romeo, Flight test validation of the dynamic model of a fuel cell system for ultra-light aircraft, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 229 (2015) 917–932. https://doi.org/10.1177/0954410014541081.

    Article  Google Scholar 

  22. G. Romeo, G. Correa, F. Borello, E. Cestino, M. Santarelli, Air Cooling of a Two-Seater Fuel Cell–Powered Aircraft: Dynamic Modeling and Comparison with Experimental Data, J. Aerosp. Eng. 25 (2012) 356–368. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000138.

    Article  Google Scholar 

  23. G. Correa, P. Muñoz, T. Falaguerra, C.R. Rodriguez, Performance comparison of conventional, hybrid, hydrogen and electric urban buses using well to wheel analysis, Energy. 141 (2017) 537–549. https://doi.org/10.1016/j.energy.2017.09.066.

    Article  Google Scholar 

  24. D. Raymer, Aircraft Design: A Conceptual Approach, Sixth Edition, American Institute of Aeronautics and Astronautics, Inc., Washington, DC, 2018. https://doi.org/10.2514/4.104909.

  25. A. Bacchini, E. Cestino, B. Van Magill, D. Verstraete, Impact of lift propeller drag on the performance of eVTOL lift+cruise aircraft, Aerosp. Sci. Technol. 109 (2021) 106429. https://doi.org/10.1016/J.AST.2020.106429.

    Article  Google Scholar 

  26. A. Bacchini, E. Cestino, Key aspects of electric vertical take-off and landing conceptual design, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 234 (2020) 774–787. https://doi.org/10.1177/0954410019884174.

    Article  Google Scholar 

  27. A. Bacchini, E. Cestino, Electric VTOL Configurations Comparison, Aerospace. 6 (2019) 26. https://doi.org/10.3390/aerospace6030026.

    Article  Google Scholar 

  28. P.M. Muñoz, G. Correa, M.E. Gaudiano, D. Fernández, Energy management control design for fuel cell hybrid electric vehicles using neural networks, Int. J. Hydrogen Energy. 42 (2017) 28932–28944. https://doi.org/10.1016/j.ijhydene.2017.09.169.

    Article  Google Scholar 

  29. G. Romeo, F. Borello, G. Correa, Set-up and test flights of an all-electric 2-seater aeroplane powered by fuel cells, J. Aircr. 49 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Correa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muñoz, P., Cestino, E., Correa, G. (2022). Energy Management Strategies in a Fuel Cell–Powered Aircraft. In: Colpan, C.O., Kovač, A. (eds) Fuel Cell and Hydrogen Technologies in Aviation. Sustainable Aviation. Springer, Cham. https://doi.org/10.1007/978-3-030-99018-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99018-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99017-6

  • Online ISBN: 978-3-030-99018-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics