Skip to main content

Leveraging Machine Learning for WBANs

  • Conference paper
  • First Online:
Distributed Computing for Emerging Smart Networks (DiCES-N 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1564))

Abstract

Wireless Body Area Networks are considered as an effective solution for a wide range of healthcare, military and sports applications. These applications are responsible for gathering and managing a huge amount of heterogeneous data from the human body or the surrounding environment in both real and non-real time manners. Relevant information for various fields can be extracted from the raw data. Recently, Machine learning has been extensively explored for real-time big data processing. Thus, the machine learning techniques are very useful for the big data analytic process. In this paper, we discuss the importance of the machine learning techniques use in the fusion and the treatment of the WBAN data, useful for different fields of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    AAL: Ambient Assisted Living.

  2. 2.

    PDA: Personal Digital Assistant.

  3. 3.

    QoS: Quality of Service.

  4. 4.

    DCT: Discrete Cosine Transform.

  5. 5.

    LBP: Local Binary Pattern.

  6. 6.

    UCA: unsupervised coloring algorithm.

  7. 7.

    AR: autoregressive.

  8. 8.

    SINR: signal to interference plus noise ratio.

  9. 9.

    BNC: Body Node Coordinator.

  10. 10.

    BN: Body Node.

  11. 11.

    RL-CAA: reinforcement learning - channel assignment algorithm.

References

  1. Negra, R., Jemili, I., Belghith, A.: Wireless body area networks: applications and technologies. Procedia Comput. Sci. 83, 1274–1281 (2016)

    Article  Google Scholar 

  2. Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., Jamalipour, A.: Wireless body area networks: a survey. IEEE Commun. Surv. Tutorials 16(3), 1658–1686 (2014)

    Article  Google Scholar 

  3. Manogaran, G., Thota, C., Lopez, D., Sundarasekar, R.: Big data security intelligence for healthcare industry 4.0. In: Thames, L., Schaefer, D. (eds.) Cybersecurity for Industry 4.0. SSAM, pp. 103–126. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50660-9_5

    Chapter  Google Scholar 

  4. Yang, G.-Z. (ed.): Body Sensor Networks. Springer, London (2014). https://doi.org/10.1007/978-1-4471-6374-9

    Book  Google Scholar 

  5. Cacciagrano, D., Culmone, R., Micheletti, M., Mostarda, L.: Energy-efficient clustering for wireless sensor devices in Internet of Things. In: Al-Turjman, F. (ed.) Performability in Internet of Things. EICC, pp. 59–80. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93557-7_5

    Chapter  Google Scholar 

  6. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  7. Rahmani, A.M., et al.: Machine learning (ML) in medicine: review, applications, and challenges. Mathematics 9(22), 2970 (2021)

    Article  Google Scholar 

  8. Al-Turjman, F., Baali, I.: Machine learning for wearable IoT-based applications: a survey. Trans. Emerg. Telecommun. Technol. e3635 (2019)

    Google Scholar 

  9. Cummins, N., Ren, Z., Mallol-Ragolta, A., Schuller, B.: Machine learning in digital health, recent trends, and ongoing challenges. In: Artificial Intelligence in Precision Health, pp. 121–148. Elsevier (2020)

    Google Scholar 

  10. Horta, E.T., Lopes, I.C., Rodrigues, J.J.P.C.: Ubiquitous mHealth approach for biofeedback monitoring with falls detection techniques and falls prevention methodologies. In: Adibi, S. (ed.) Mobile Health. SSB, vol. 5, pp. 43–75. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-12817-7_3

    Chapter  Google Scholar 

  11. Farahani, S.: ZigBee Wireless Networks and Transceivers. newnes (2011)

    Google Scholar 

  12. Wong, A., et al.: A 1V 5MA multimode IEEE 802.15. 6/bluetooth low-energy WBAN transceiver for biotelemetry applications. In: Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE International, pp. 300–302. IEEE (2012)

    Google Scholar 

  13. Jovanov, E., Milenkovic, A., Otto, C., De Groen, P.C.: A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation. J. NeuroEngineering Rehabil. 2(1), 1–10 (2005)

    Article  Google Scholar 

  14. Choquette, S., Hamel, M., Boissy, P.: Accelerometer-based wireless body area network to estimate intensity of therapy in post-acute rehabilitation. J. NeuroEngineering Rehabil. 5(1), 1–11 (2008)

    Article  Google Scholar 

  15. Ullah, F., Islam, I.U., Abdullah, A.H., Khan, A.: Future of big data and deep learning for wireless body area networks. In: Deep Learning: Convergence to Big Data Analytics. SCS, pp. 53–77. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-3459-7_5

    Chapter  Google Scholar 

  16. Kim, B.-S., Kim, K.-I., Shah, B., Chow, F., Kim, K.H.: Wireless sensor networks for big data systems. Sensors 19(7), 1565 (2019)

    Article  Google Scholar 

  17. Kotsiantis, S.B., Zaharakis, I., Pintelas, P.: Supervised machine learning: a review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 160, 3–24 (2007)

    Google Scholar 

  18. Wang, S., Jiang, L., Li, C.: Adapting Naive Bayes tree for text classification. Knowl. Inf. Syst. 44(1), 77–89 (2015)

    Article  Google Scholar 

  19. Hasan, R.C., Ierodiaconou, D., Monk, J.: Evaluation of four supervised learning methods for benthic habitat mapping using backscatter from multi-beam sonar. Remote Sens. 4(11), 3427–3443 (2012)

    Article  Google Scholar 

  20. Kumar, R., Kumar, M., Pandey, M.: Predictive modeling using supervised machine learning approach. Fire Saf. J. 104, 130–146 (2019)

    Article  Google Scholar 

  21. Geng-Shen, F., Levin-Schwartz, Y., Lin, Q.-H., Zhang, D.: Machine learning for medical imaging. J. Healthcare Eng. 2019, 9874591 (2019)

    Google Scholar 

  22. Thakare, R.D., Meshram, V.P., Chintawar, I.S., Patil, I.A., Nagrale, P.N.: DSP based ECG abnormality classification using artificial neural network. Int. J. 4(4) (2014)

    Google Scholar 

  23. Acampora, G., Cook, D.J., Rashidi, P., Vasilakos, A.V.: A survey on ambient intelligence in healthcare. Proc. IEEE 101(12), 2470–2494 (2013)

    Article  Google Scholar 

  24. Balakrishna, S., Thirumaran, M., Solanki, V.K.: IoT sensor data integration in healthcare using semantics and machine learning approaches. In: Balas, V.E., Solanki, V.K., Kumar, R., Ahad, M.A.R. (eds.) A Handbook of Internet of Things in Biomedical and Cyber Physical System. ISRL, vol. 165, pp. 275–300. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-23983-1_11

    Chapter  Google Scholar 

  25. Pandey, S.R., Ma, J., Lai, C.-H.: A supervised machine learning approach to generate the auto rule for clinical decision support system. Trends Med. 20(3), 1–9 (2020)

    Google Scholar 

  26. https://www.geeksforgeeks.org/what-is-reinforcement-learning/

  27. Yang, X., Dinh, A., Chen, L.: Implementation of a wearerable real-time system for physical activity recognition based on Naive Bayes classifier. In: 2010 International Conference on Bioinformatics and Biomedical Technology, pp. 101–105. IEEE (2010)

    Google Scholar 

  28. Obenshain, M.K.: Application of data mining techniques to healthcare data. Infect. Control Hosp. Epidemiol. 25(8), 690–695 (2004)

    Article  Google Scholar 

  29. Preece, S.J., Goulermas, J.Y., Kenney, L.P.J., Howard, D., Meijer, K., Crompton, R.: Activity identification using body-mounted sensors-a review of classification techniques. Physiol. Measure. 30(4), R1 (2009)

    Article  Google Scholar 

  30. Negra, R., Jemili, I., Zemmari, A., Mosbah, M., Belghith, A.: WBAN path loss based approach for human activity recognition with machine learning techniques. In: 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC), pp. 470–475. IEEE (2018)

    Google Scholar 

  31. Cho, Y., Nam, Y., Choi, Y.-J., Cho, W.-D.: SmartBuckle: human activity recognition using a 3-axis accelerometer and a wearable camera. In: Proceedings of the 2nd International Workshop on Systems and Networking Support for Health Care and Assisted Living Environments, p. 7. ACM (2008)

    Google Scholar 

  32. He, Z.-Y., Jin, L.-W.: Activity recognition from acceleration data using AR model representation and SVM. In: 2008 International Conference on Machine Learning and Cybernetics, vol. 4, pp. 2245–2250. IEEE (2008)

    Google Scholar 

  33. Ganti, R.K., Jayachandran, P., Abdelzaher, T.F., Stankovic, J.A.: Satire: a software architecture for smart attire. In: Proceedings of the 4th International Conference on Mobile Systems, Applications and Services, pp. 110–123. ACM (2006)

    Google Scholar 

  34. He, Z., Jin, L.: Activity recognition from acceleration data based on discrete cosine transform and SVM. In: 2009 IEEE International Conference on Systems, Man and Cybernetics, pp. 5041–5044. IEEE (2009)

    Google Scholar 

  35. Khan, A.M., Lee, Y.-K., Lee, S.-Y., Kim, T.-S.: Human activity recognition via an accelerometer-enabled-smartphone using kernel discriminant analysis. In: 2010 5th International Conference on Future Information Technology, pp. 1–6. IEEE (2010)

    Google Scholar 

  36. Casale, P., Pujol, O., Radeva, P.: Human activity recognition from accelerometer data using a wearable device. In: Vitrià, J., Sanches, J.M., Hernández, M. (eds.) IbPRIA 2011. LNCS, vol. 6669, pp. 289–296. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21257-4_36

    Chapter  Google Scholar 

  37. Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015)

    Article  Google Scholar 

  38. Gravina, R., Alinia, P., Ghasemzadeh, H., Fortino, G.: Multi-sensor fusion in body sensor networks: state-of-the-art and research challenges. Inf. Fusion 35, 68–80 (2017)

    Article  Google Scholar 

  39. Bose, A., Hu, X., Shin, K.G., Park, T.: Behavioral detection of malware on mobile handsets. In: Proceedings of the 6th International Conference on Mobile Systems, Applications, and Services, pp. 225–238. ACM (2008)

    Google Scholar 

  40. Jin, Z., Han, Y., Cho, J., Lee, B.: A prediction algorithm for coexistence problem in multiple-WBAN environment. Int. J. Distrib. Sens. Netw. 11(3), 386842 (2015)

    Article  Google Scholar 

  41. Chui, K.T., Alhalabi, W., Pang, S.S.H., de Pablos, P.O., Liu, R.W., Zhao, M.: Disease diagnosis in smart healthcare: innovation, technologies and applications. Sustainability 9(12), 2309 (2017)

    Article  Google Scholar 

  42. Almustafa, K.M.: Prediction of heart disease and classifiers’ sensitivity analysis. BMC Bioinform. 21(1), 1–18 (2020)

    Article  Google Scholar 

  43. Salem, O., Guerassimov, A., Mehaoua, A., Marcus, A., Furht, B.: Anomaly detection in medical wireless sensor networks using SVM and linear regression models. Int. J. E-Health Med. Commun. (IJEHMC) 5(1), 20–45 (2014)

    Article  Google Scholar 

  44. Procházka, A., Charvátová, H., Vaseghi, S., Vyšata, O.: Machine learning in rehabilitation assessment for thermal and heart rate data processing. IEEE Trans. Neural Syst. Rehabil. Eng. 26(6), 1209–1214 (2018)

    Article  Google Scholar 

  45. Pachauri, G., Sharma, S.: Anomaly detection in medical wireless sensor networks using machine learning algorithms. Procedia Comput. Sci. 70, 325–333 (2015)

    Article  Google Scholar 

  46. Gutiérrez-Gnecchi, J.A., et al.: DSP-based arrhythmia classification using wavelet transform and probabilistic neural network. Biomed. Signal Process. Control 32, 44–56 (2017)

    Article  Google Scholar 

  47. Arif, M., Malagore, I.A., Afsar, F.A.: Detection and localization of myocardial infarction using k-nearest neighbor classifier. J. Med. Syst. 36(1), 279–289 (2012)

    Article  Google Scholar 

  48. Jayachandran, E.S., et al.: Analysis of myocardial infarction using discrete wavelet transform. J. Med. Syst. 34(6), 985–992 (2010)

    Article  Google Scholar 

  49. Machado, I.P., Gomes, A.L., Gamboa, H., Paixão, V., Costa, R.M.: Human activity data discovery from triaxial accelerometer sensor: non-supervised learning sensitivity to feature extraction parametrization. Inf. Process. Manage. 51(2), 204–214 (2015)

    Article  Google Scholar 

  50. Gao, Z., et al.: Automatic change detection for real-time monitoring of EEG signals. Front. Physiol. 9, 325 (2018)

    Article  Google Scholar 

  51. Mostafa, S.S., Mendonça, F., Morgado-Dias, F., Ravelo-García, A.: SpO2 based sleep apnea detection using deep learning. In: 2017 IEEE 21st International Conference on Intelligent Engineering Systems (INES), pp. 000091–000096. IEEE (2017)

    Google Scholar 

  52. Chang, P.-C., Lin, J.-J., Hsieh, J.-C., Weng, J.: Myocardial infarction classification with multi-lead ECG using hidden Markov models and gaussian mixture models. Appl. Soft Comput. 12(10), 3165–3175 (2012)

    Article  Google Scholar 

  53. Jiasong, M., Wei, Y., Ma, H., Li, Y.: Spectrum allocation scheme for intelligent partition based on machine learning for inter-WBAN interference. IEEE Wirel. Commun. 27(5), 32–37 (2020)

    Article  Google Scholar 

  54. Ma, H., Jiasong, M.: Improved unsupervised coloring algorithm for spectrum allocation in multiple wireless body area networks. Ad Hoc Netw. 111, 102326 (2021)

    Article  Google Scholar 

  55. Subathra, M.S.P., et al.: Detection of focal and non-focal electroencephalogram signals using fast Walsh-Hadamard transform and artificial neural network. Sensors 20(17), 4952 (2020)

    Article  Google Scholar 

  56. Kazemi, R., Vesilo, R., Dutkiewicz, E., Liu, R.: Dynamic power control in wireless body area networks using reinforcement learning with approximation. In: 2011 IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 2203–2208. IEEE (2011)

    Google Scholar 

  57. Ahmed, T., Ahmed, F., Moullec, Y.L.: Optimization of channel allocation in wireless body area networks by means of reinforcement learning. In: 2016 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob), pp. 120–123. IEEE (2016)

    Google Scholar 

  58. Liang, X., Balasingham, I., Byun, S.-S.: A reinforcement learning based routing protocol with QoS support for biomedical sensor networks. In: 2008 First International Symposium on Applied Sciences on Biomedical and Communication Technologies, pp. 1–5. IEEE (2008)

    Google Scholar 

  59. Negra, R., Jemili, I., Zemmari, A., Mosbah, M., Belghith, A., Abdallah, N.O.: Leveraging the link quality awareness for body node coordinator (BNC) placement in WBANs. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, pp. 754–761. ACM (2019)

    Google Scholar 

  60. Awad, M., Sallabi, F., Shuaib, K., Naeem, F.: Artificial intelligence-based fault prediction framework for WBAN. J. King Saud Univ. Comput. Inf. Sci. (2021)

    Google Scholar 

  61. Ruotsalainen, M., Ala-Kleemola, T., Visa, A.: GAIS: a method for detecting interleaved sequential patterns from imperfect data. In: 2007 IEEE Symposium on Computational Intelligence and Data Mining, pp. 530–534. IEEE (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rim Negra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Negra, R. (2022). Leveraging Machine Learning for WBANs. In: Jemili, I., Mosbah, M. (eds) Distributed Computing for Emerging Smart Networks. DiCES-N 2022. Communications in Computer and Information Science, vol 1564. Springer, Cham. https://doi.org/10.1007/978-3-030-99004-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99004-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99003-9

  • Online ISBN: 978-3-030-99004-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics