Skip to main content

Artificial Intelligence in Studies of Malignant Tumours

  • Chapter
  • First Online:
Biomarkers of the Tumor Microenvironment

Abstract

With the introduction of digital pathology and artificial intelligence (AI)-based methods, we may be facing a new era in cancer diagnostics and prognostication. AI can assist pathologists in labour-intensive tasks and potentially discover new features currently not detected and characterized in routine diagnostics. As entire digital histopathological sections can be included in the analysis, AI can be used both to study the epithelial component of a tumour and the microenvironment. Most state-of-the-art AI approaches used for image analysis utilize multi-step pipelines. AI-based methods have shown promising results in a wide range of clinically relevant tasks. It is, however, important to be aware of some challenges and limitations, such as the lack of generalizability of AI-based models, and the importance of understanding the reason behind a conclusion.

Digital Pathology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Algorithm: A finite list of computer-implemented instructions and rules a computer needs to solve a specific task.

  2. 2.

    Convolution: A mathematical operation that performs filtering of input data, using a predefined filter function or kernel. An example could be to blur an image or extract edge information.

  3. 3.

    Patch: A subregion of an image. It is also commonly referred to as a tile.

  4. 4.

    Histogram: A method used to extract the frequency of different values.

  5. 5.

    Pixel: The smallest addressable region in an image. The size of a pixel is defined by the resolution.

  6. 6.

    Class: A predefined type of object or structure in a data sample. A set of images of cats and a set of images of dogs could be labelled with two different classes, one for each animal. Then a classifier may be trained to distinguish between images of the different classes/animals.

  7. 7.

    DBSCAN: A density-based algorithm for discovering clusters in large spatial databases with noise. An unsupervised machine learning method for performing clustering.

References

  1. Chung YR, Jang MH, Park SY, Gong G, Jung WH. Korean breast pathology Ki-67 study G. Interobserver variability of Ki-67 measurement in breast cancer. J Pathol Transl Med. 2016;50(2):129–37.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ehteshami Bejnordi B, Veta M, Johannes van Diest P, van Ginneken B, Karssemeijer N, Litjens G, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA. 2017;318(22):2199–210.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Salto-Tellez M, Maxwell P, Hamilton P. Artificial intelligence-the third revolution in pathology. Histopathology. 2019;74(3):372–6.

    Article  PubMed  Google Scholar 

  4. Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med. 2019;25(6):954–61.

    Article  CAS  PubMed  Google Scholar 

  5. McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577(7788):89–94.

    Article  CAS  PubMed  Google Scholar 

  6. Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A, et al. Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm. arXiv preprint arXiv. 2017:1712.01815.

    Google Scholar 

  7. Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, et al. Improved protein structure prediction using potentials from deep learning. Nature. 2020;577(7792):706–10.

    Article  CAS  PubMed  Google Scholar 

  8. Stanford Vision Lab. Imagenet [cited 2021 02.15]. Available from: http://www.image-net.org/.

  9. Campanella G, Hanna MG, Geneslaw L, Miraflor A, Werneck Krauss Silva V, Busam KJ, et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat Med. 2019;25(8):1301–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. International conference on medical image computing and computer-assisted intervention. 9351. Cham: Springer; 2015. p. 234–41.

    Google Scholar 

  11. Oskal KRJ, Risdal M, Janssen EAM, Undersrud ES, Gulsrud TO. A U-net based approach to epidermal tissue segmentation in whole slide histopathological images. SN Appl Sci. 2019;1(7):672.

    Article  CAS  Google Scholar 

  12. Schmitz R, Madesta F, Nielsen M, Werner R, Rösch T. Multi-scale fully convolutional neural networks for histopathology image segmentation: from nuclear aberrations to the global tissue architecture. arXiv preprint arXiv. 2019;1909.10726.

    Google Scholar 

  13. Dong N, Kampffmeyer M, Liang X, Wang Z, Dai W, Xing E. Reinforced auto-zoom net: towards accurate and fast breast cancer segmentation in whole-slide images. Deep learning in medical image analysis and multimodal learning for clinical decision support. Cham: Springer; 2018. p. 317–25.

    Google Scholar 

  14. Mehta S, Mercan E, Bartlett J, Weave D, Elmore J, Shapiro L. Y-Net: joint segmentation and classification for diagnosis of breast biopsy images. In: International conference on medical image computing and computer-assisted intervention. Cham: Springer; 2018. p. 893–901.

    Google Scholar 

  15. Priego-Torres BM, Sanchez-Morillo D, Fernandez-Granero MA, Garcia-Rojo M. Automatic segmentation of whole-slide H&E stained breast histopathology images using a deep convolutional neural network architecture. Expert Syst Appl. 2020;151:113387.

    Article  Google Scholar 

  16. Cortes C, Vapnik V. Support-vector networks. Chem Biol Drug Des. 2009;297:273–97.

    Google Scholar 

  17. Ho TK. Random decision forests. In: Proceedings of 3rd International Conference on Document Analysis and Recognition, Montreal, Quebec, Canada; 1995. p. 278–82.

    Google Scholar 

  18. Ren M, editor. Learning a classification model for segmentation. In: Proceedings Ninth IEEE International Conference on Computer Vision; 2003. 13–16 Oct. 2003.

    Google Scholar 

  19. Xing F, Yang L. Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: a comprehensive review. IEEE Rev Biomed Eng. 2016;9:234–63.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hansen S, Kuttner S, Kampffmeyer M, Markussen T-V, Sundset R, Øen SK, et al. Unsupervised supervoxel-based lung tumor segmentation across patient scans in hybrid PET/MRI. Expert Syst Appl. 2021;167:114244.

    Article  Google Scholar 

  21. Bejnordi BE, Litjens G, Hermsen M, Karssemeijer N, van der Laak JA. A multi-scale superpixel classification approach to the detection of regions of interest in whole slide histopathology images. In: SPIE Medical Imaging 2015. 9420: International Society for Optics and Photonics; 2015. p. 94200H.

    Google Scholar 

  22. Beucher S, Lantuéjoul C. Use of Watersheds in Contour Detection. In: International workshop on image processing, real-time edge and motion detection. 1979.

    Google Scholar 

  23. Zucker SW. Region growing: childhood and adolescence. Comput Graph Image Proc. 1976;5(3):382–99.

    Article  Google Scholar 

  24. Osher S, Sethian JA. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys. 1988;79(1):12–49.

    Article  Google Scholar 

  25. Bianconi F, Kather JN, Reyes-Aldasoro CC. Evaluation of colour pre-processing on patch-based classification of H&E-stained images. In: Reyes-Aldasoro CC, Janowczyk A, Veta M, Bankhead P, Sirinukunwattana K, editors. European congress on digital pathology. Cham: Springer; 2019. p. 56–64.

    Chapter  Google Scholar 

  26. Tellez D, Litjens G, Bándi P, Bulten W, Bokhorst J-M, Ciompi F, et al. Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology. Med Image Anal. 2019;58:101544.

    Article  PubMed  Google Scholar 

  27. Bankhead P, Fernandez JA, McArt DG, Boyle DP, Li G, Loughrey MB, et al. Integrated tumor identification and automated scoring minimizes pathologist involvement and provides new insights to key biomarkers in breast cancer. Lab Investig. 2018;98(1):15–26.

    Article  PubMed  Google Scholar 

  28. Aresta G, Araújo T, Kwok S, Chennamsetty SS, Safwan M, Alex V, et al. BACH: grand challenge on breast cancer histology images. Med Image Anal. 2019;56:122–39.

    Article  PubMed  Google Scholar 

  29. Karim M, Beyan O, Zappa A, Costa I, Rebholz-Schuhman D, Cochez M, et al. Deep learning-based clustering approaches for bioinformatics. Brief Bioinform. 2020;22:393–415.

    Article  PubMed Central  Google Scholar 

  30. Chenni W, Herbi H, Babaie M, Tizhoosh HR. Patch clustering for representation of histopathology images. European congress on digital pathology. Cham: Springer; 2019. p. 28–37.

    Google Scholar 

  31. Abbet C, Zlobec I, Bozorgtabar B, Thiran J-P. Divide-and-rule: self-supervised learning for survival analysis in colorectal cancer. In: Martel AL, Abolmaesumi P, Stoyanov D, Mateus D, Zuluaga MA, Zhou SK, et al., editors. International conference on medical image computing and computer-assisted intervention. Cham: Springer; 2020. p. 480–9.

    Google Scholar 

  32. Li MWL, Wiliem A, Zhao K, Zhang T, Lovell B. Deep instance-level hard negative mining model for histopathology images. In: International conference on medical image computing and computer-assisted intervention, vol. 11764. Cham: Springer; 2019. p. 514–22.

    Google Scholar 

  33. Tomita N, Abdollahi B, Wei J, Ren B, Suriawinata A, Hassanpour S. Finding a Needle in the Haystack: Attention-Based Classification of High Resolution Microscopy Images. arXiv preprint arXiv. 2018:1811.08513.

    Google Scholar 

  34. Ilse M, Tomczak J, Welling M. Attention-based deep multiple instance learning. In: International conference on machine learning: PMLR; 2018. p. 2127–2136.

    Google Scholar 

  35. Keeler J, Rumelhart D, Leow WK. Integrated Segmentation and Recognition of Hand-Printed Numerals: Microelectronics and Computer Technology Corporation; 1991.

    Google Scholar 

  36. Sudharshan PJ, Petitjean C, Spanhol F, Oliveira L, Heutte L, Honeine P. Multiple instance learning for histopathological breast cancer image classification. Expert Syst Appl. 2018;117:103–11.

    Article  Google Scholar 

  37. Wang S, Zhu Y, Yu L, Chen H, Lin H, Wan X, et al. RMDL: recalibrated multi-instance deep learning for whole slide gastric image classification. Med Image Anal. 2019;58:101549.

    Article  PubMed  Google Scholar 

  38. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  39. Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, van de Vijver MJ, editors. WHO classification of Tumours of the breast. 4th ed. Lyon: International Agency for Research on Cancer (IARC); 2012.

    Google Scholar 

  40. Coates AS, Winer EP, Goldhirsch A, Gelber RD, Gnant M, Piccart-Gebhart M, et al. Tailoring therapies-improving the management of early breast cancer: St Gallen international expert consensus on the primary therapy of early breast cancer 2015. Ann Oncol. 2015;26(8):1533–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27(8):1160–7.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Beck AH, Sangoi AR, Leung S, Marinelli RJ, Nielsen TO, van de Vijver MJ, et al. Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci Transl Med 2011;3(108):108ra13.

    Google Scholar 

  43. Balkenhol MCA, Tellez D, Vreuls W, Clahsen PC, Pinckaers H, Ciompi F, et al. Deep learning assisted mitotic counting for breast cancer. Lab Investig. 2019;99(11):1596–606.

    Article  PubMed  Google Scholar 

  44. Huang HS, Su HY, Li PH, Chiang PH, Huang CH, Chen CH, et al. Prognostic impact of tumor infiltrating lymphocytes on patients with metastatic urothelial carcinoma receiving platinum based chemotherapy. Sci Rep. 2018;8(1):7485.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Wang B, Wu S, Zeng H, Liu Z, Dong W, He W, et al. CD103+ tumor infiltrating lymphocytes predict a favorable prognosis in urothelial cell carcinoma of the bladder. J Urol. 2015;194(2):556–62.

    Article  CAS  PubMed  Google Scholar 

  46. Sharma P, Shen Y, Wen S, Yamada S, Jungbluth AA, Gnjatic S, et al. CD8 tumor-infiltrating lymphocytes are predictive of survival in muscle-invasive urothelial carcinoma. Proc Natl Acad Sci U S A. 2007;104(10):3967–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Krpina K, Babarovic E, Dordevic G, Fuckar Z, Jonjic N. The association between the recurrence of solitary nonmuscle invasive bladder cancer and tumor infiltrating lymphocytes. Croat Med J. 2012;53(6):598–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhu X, Ma LL, Ye T. Expression of CD4(+)CD25(high)CD127(low/−) regulatory T cells in transitional cell carcinoma patients and its significance. J Clin Lab Anal. 2009;23(4):197–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Parodi A, Traverso P, Kalli F, Conteduca G, Tardito S, Curto M, et al. Residual tumor micro-foci and overwhelming regulatory T lymphocyte infiltration are the causes of bladder cancer recurrence. Oncotarget. 2016;7(6):6424–35.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wetteland R, Engan K, Eftestøl T, Kvikstad V, Janssen EAM. A multiscale approach for whole-slide image segmentation of five tissue classes in urothelial carcinoma slides. Technol Cancer Res Treat. 2020;19:1–15.

    Article  Google Scholar 

  51. Hosseini MS, Chan L, Tse G, Tang M, Deng J, Norouzi S, et al. Atlas of digital pathology: a generalized hierarchical histological tissue type-annotated database for deep learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2019. p. 11747–11756.

    Google Scholar 

  52. Evangeline IK, Precious JG, Pazhanivel N, Kirubha SPA. Automatic detection and counting of lymphocytes from immunohistochemistry cancer images using deep learning. J Med Biol Eng. 2020;40(5):735–47.

    Article  Google Scholar 

  53. Yoo SP, Park HE, Kim JH, Wen X, Jeong S, Cho NY, et al. Whole-slide image analysis reveals quantitative landscape of tumor-immune microenvironment in colorectal cancers. Clin Cancer Res. 2020;26(4):870–81.

    Article  CAS  PubMed  Google Scholar 

  54. Amgad M, Stovgaard ES, Balslev E, Thagaard J, Chen W, Dudgeon S, et al. Report on computational assessment of tumor infiltrating lymphocytes from the international Immuno-oncology biomarker working group. Npj Breast Cancer. 2020;6(1)

    Google Scholar 

  55. Baak JPA. The framework of pathology: good laboratory practice by quantitative and molecular methods. J Pathol. 2002;198(3):277–83.

    Article  PubMed  Google Scholar 

  56. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313(5795):1960–4.

    Article  CAS  PubMed  Google Scholar 

  57. Benchaaben A, Guimaraes M, Prestat E, Kassambara A, Filah IM, Laugé C, et al. Immunoscore workflow enhanced by Artificial Intelligence (Poster) 2020 [cited 2021 02.15]. Available from: https://www.haliodx.com/fileadmin/pdf/Poster_AACR_2020_AI_200605.pdf.

  58. Saltz J, Gupta R, Hou L, Kurc T, Singh P, Nguyen V, et al. Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images. Cell Rep. 2018;23(1):181–93.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. AbdulJabbar K, Raza SEA, Rosenthal R, Jamal-Hanjani M, Veeriah S, Akarca A, et al. Geospatial immune variability illuminates differential evolution of lung adenocarcinoma. Nat Med. 2020;26(7):1054–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bailly AL DC, Filahi M, Martirosyan A, Kassambara A, Perbost R, Girardi H, Sbarrato T, Fieschi J. Unravelling the mystery of Cancer Associated Fibroblasts (CAFs) populations in the tumor microenvironment by fully automated sequential chromogenic multiplex assay (Poster) 2020 [cited 2021 02.15]. Available from: https://www.haliodx.com/fileadmin/pdf/Poster_CAF__AACR2020.pdf.

  61. Kruger K, Stefansson IM, Collett K, Arnes JB, Aas T, Akslen LA. Microvessel proliferation by co-expression of endothelial nestin and Ki-67 is associated with a basal-like phenotype and aggressive features in breast cancer. Breast. 2013;22(3):282–8.

    Article  CAS  PubMed  Google Scholar 

  62. Arnes JB, Stefansson IM, Straume O, Baak JP, Lonning PE, Foulkes WD, et al. Vascular proliferation is a prognostic factor in breast cancer. Breast Cancer Res Treat. 2012;133(2):501–10.

    Article  CAS  PubMed  Google Scholar 

  63. Stefansson IM, Salvesen HB, Akslen LA. Vascular proliferation is important for clinical progress of endometrial cancer. Cancer Res. 2006;66(6):3303–9.

    Article  CAS  PubMed  Google Scholar 

  64. Gravdal K, Halvorsen OJ, Haukaas SA, Akslen LA. Proliferation of immature tumor vessels is a novel marker of clinical progression in prostate cancer. Cancer Res. 2009;69(11):4708–15.

    Article  CAS  PubMed  Google Scholar 

  65. Ramnefjell M, Aamelfot C, Aziz S, Helgeland L, Akslen LA. Microvascular proliferation is associated with aggressive tumour features and reduced survival in lung adenocarcinoma. J Pathol Clin Res. 2017;3(4):249–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis--correlation in invasive breast carcinoma. N Engl J Med. 1991;324(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  67. Mete M, Hennings L, Spencer HJ, Topaloglu U. Automatic identification of angiogenesis in double stained images of liver tissue. BMC Bioinf. 2009;10(11):S13.

    Article  CAS  Google Scholar 

  68. Kather JN, Marx A, Reyes-Aldasoro CC, Schad LR, Zöllner FG, Weis C-A. Continuous representation of tumor microvessel density and detection of angiogenic hotspots in histological whole-slide images. Oncotarget. 2015;6(22):19163–76.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Chantrain CF, DeClerck YA, Groshen S, McNamara G. Computerized quantification of tissue vascularization using high-resolution slide scanning of whole tumor sections. J Histochem Cytochem. 2003;51(2):151–8.

    Article  CAS  PubMed  Google Scholar 

  70. van Niekerk CG, van der Laak JA, Börger ME, Huisman HJ, Witjes JA, Barentsz JO, et al. Computerized whole slide quantification shows increased microvascular density in pT2 prostate cancer as compared to normal prostate tissue. Prostate. 2009;69(1):62–9.

    Article  PubMed  Google Scholar 

  71. Yi F, Yang L, Wang S, Guo L, Huang C, Xie Y, et al. Microvessel prediction in H&E Stained Pathology Images using fully convolutional neural networks. BMC Bioinf. 2018;19(1):64.

    Article  Google Scholar 

  72. Basavanhally A, Feldman M, Shih N, Mies C, Tomaszewski J, Ganesan S, et al. Multi-field-of-view strategy for image-based outcome prediction of multi-parametric estrogen receptor-positive breast cancer histopathology: comparison to oncotype DX. J Pathol Inform. 2011;2:S1.

    Article  PubMed  Google Scholar 

  73. Fraz MM, Khurram SA, Graham S, Shaban M, Hassan M, Loya A, et al. FABnet: feature attention-based network for simultaneous segmentation of microvessels and nerves in routine histology images of oral cancer. Neural Comput & Applic. 2020;32(14):9915–28.

    Article  Google Scholar 

  74. Nalisnik M, Amgad M, Lee S, Halani SH, Velazquez Vega JE, Brat DJ, et al. Interactive phenotyping of large-scale histology imaging data with HistomicsML. Sci Rep. 2017;7(1):14588.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Bejnordi BE, Mullooly M, Pfeiffer RM, Fan S, Vacek PM, Weaver DL, et al. Using deep convolutional neural networks to identify and classify tumor-associated stroma in diagnostic breast biopsies. Mod Pathol. 2018;31(10):1502–12.

    Article  PubMed Central  Google Scholar 

  76. Northey JJ, Barrett AS, Acerbi I, Hayward M-K, Talamantes S, Dean IS, et al. Stiff stroma increases breast cancer risk by inducing the oncogene ZNF217. J Clin Invest. 2020;130(11):5721–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhao K, Li Z, Yao S, Wang Y, Wu X, Xu Z, et al. Artificial intelligence quantified tumour-stroma ratio is an independent predictor for overall survival in resectable colorectal cancer. EBioMedicine. 2020;61:103054.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kather JNKJ, Charoentong P, Luedde T, Herpel E, Weis C-A, Gaiser T, Marx A, Valous NA, Ferber D, Jansen L, Reyes-Aldasoro CC, Zörnig I, Jäger D, Brenner H, Chang-Claude J, Hoffmeister M, Halama N. Predicting survival from colorectal cancer histology slides using deep learning: a retrospective multicenter study. PLoS Med. 2019;16(1):e1002730.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Siregar P, Julen N, Hufnagl P, Mutter GL. Computational morphogenesis – embryogenesis, cancer research and digital pathology. Biosystems. 2018;169–170:40–54.

    Article  PubMed  Google Scholar 

  80. Mobadersany P, Yousefi S, Amgad M, Gutman DA, Barnholtz-Sloan JS, Velazquez Vega JE, et al. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc Natl Acad Sci U S A. 2018;115(13):E2970–E9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Meier A, Nekolla K, Hewitt LC, Earle S, Yoshikawa T, Oshima T, et al. Hypothesis-free deep survival learning applied to the tumour microenvironment in gastric cancer. J Pathol Clin Res. 2020;6(4):273–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Skrede OJ, De Raedt S, Kleppe A, Hveem TS, Liestol K, Maddison J, et al. Deep learning for prediction of colorectal cancer outcome: a discovery and validation study. Lancet. 2020;395(10221):350–60.

    Article  CAS  PubMed  Google Scholar 

  83. Bychkov D, Linder N, Turkki R, Nordling S, Kovanen PE, Verrill C, et al. Deep learning based tissue analysis predicts outcome in colorectal cancer. Sci Rep. 2018;8(1):3395.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Turkki R, Byckhov D, Lundin M, Isola J, Nordling S, Kovanen PE, et al. Breast cancer outcome prediction with tumour tissue images and machine learning. Breast Cancer Res Treat. 2019;177(1):41–52.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Chen JM, Qu AP, Wang LW, Yuan JP, Yang F, Xiang QM, et al. New breast cancer prognostic factors identified by computer-aided image analysis of HE stained histopathology images. Sci Rep. 2015;5:10690.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yu KH, Zhang C, Berry GJ, Altman RB, Re C, Rubin DL, et al. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat Commun. 2016;7:12474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wulczyn E, Steiner DF, Xu Z, Sadhwani A, Wang H, Flament-Auvigne I, et al. Deep learning-based survival prediction for multiple cancer types using histopathology images. PLoS One. 2020;15(6):e0233678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yao J, Zhu X, Jonnagaddala J, Hawkins N, Huang J. Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks. Med Image Anal. 2020;65:101789.

    Article  PubMed  Google Scholar 

  89. Courtiol P, Maussion C, Moarii M, Pronier E, Pilcer S, Sefta M, et al. Deep learning-based classification of mesothelioma improves prediction of patient outcome. Nat Med. 2019;25(10):1519–25.

    Article  CAS  PubMed  Google Scholar 

  90. Wu CX, Lin GS, Lin ZX, Zhang JD, Liu SY, Zhou CF. Peritumoral edema shown by MRI predicts poor clinical outcome in glioblastoma. World J Surg Oncol. 2015;13:97.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Samek W, Binder A, Montavon G, Lapuschkin S, Muller KR. Evaluating the visualization of what a deep neural network has learned. IEEE Trans Neural Netw Learn Syst. 2017;28(11):2660–73.

    Article  PubMed  Google Scholar 

  92. Montavon G, Samek W, Müller K-R. Methods for interpreting and understanding deep neural networks. Digital Signal Proc. 2018;73:1–15.

    Article  Google Scholar 

  93. Lundberg SM, Lee SI. A Unified Approach to Interpreting Model Predictions. arXiv preprint arXiv. 2017:1705.07874.

    Google Scholar 

  94. Ribeiro M, Singh S, Guestrin C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier; 2016. 97–101 p.

    Google Scholar 

  95. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. Proceedings of the IEEE international conference on computer vision; 2017. p. 618–26.

    Google Scholar 

  96. Quinlan JR. Induction of Decision Trees: CiteCeerX; 1986 [cited 2021 02.15]. Available from: http://citeseerx.ist.psu.edu/viewdoc/similar?doi=10.1.1.167.3624&type=cc.

  97. Philips IntelliSite Pathology Solution 2021 [cited 2021 02.15]. Available from: https://www.philips.no/healthcare/resources/landing/philips-intellisite-pathology-solution.

  98. Marée R, Rollus L, Stévens B, Hoyoux R, Louppe G, Vandaele R, et al. Collaborative analysis of multi-gigapixel imaging data using Cytomine. Bioinformatics (Oxford, England). 2016;32(9):1395–401.

    Article  CAS  Google Scholar 

  99. Aiforia [cited 2021 02.15]. Available from: https://www.aiforia.com/.

  100. Bankhead P, Loughrey MB, Fernandez JA, Dombrowski Y, McArt DG, Dunne PD, et al. QuPath: open source software for digital pathology image analysis. Sci Rep. 2017;7(1):16878.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Stritt M, Stalder A, Vezzali E. Orbit image analysis: an open-source whole slide image analysis tool. PLoS Comput Biol. 2020;16(2):e1007313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pedersen A, Valla M, Bofin A, Frutos J, Reinertsen I, Smistad E. FastPathology: An open-source platform for deep learning-based research and decision support in digital pathology. arXiv preprint arXiv. 2020:2011.06033.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marit Valla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pedersen, A., Reinertsen, I., Janssen, E.A.M., Valla, M. (2022). Artificial Intelligence in Studies of Malignant Tumours. In: Akslen, L.A., Watnick, R.S. (eds) Biomarkers of the Tumor Microenvironment. Springer, Cham. https://doi.org/10.1007/978-3-030-98950-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98950-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98949-1

  • Online ISBN: 978-3-030-98950-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics