Skip to main content

Can 5G mmWave Support Multi-user AR?

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13210)


Augmented Reality (AR) has been widely hailed as a representative of ultra-high bandwidth and ultra-low latency apps that will be enabled by 5G networks. While single-user AR can perform AR tasks locally on the mobile device, multi-user AR apps, which allow multiple users to interact within the same physical space, critically rely on the cellular network to support user interactions. However, a recent study showed that multi-user AR apps can experience very high end-to-end latency when running over LTE, rendering user interaction practically infeasible. In this paper, we study whether 5G mmWave, which promises significant bandwidth and latency improvements over LTE, can support multi-user AR by conducting an in-depth measurement study of the same popular multi-user AR app over both LTE and 5G mmWave.

Our measurement and analysis show that: (1) The E2E AR latency over LTE is significantly lower compared to the values reported in the previous study. However, it still remains too high for practical user interaction. (2) 5G mmWave brings no benefits to multi-user AR apps. (3) While 5G mmWave reduces the latency of the uplink visual data transmission, there are other components of the AR app that are independent of the network technology and account for a significant fraction of the E2E latency. (4) The app drains 66% more network energy, which translates to 28% higher total energy over 5G mmWave compared to over LTE.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. Fundamental concepts of ARCore (2021).

  2. Dataset: Can 5G mmWave support Multi-User AR? (2022).

  3. Apple ARKit: Creating a Multiuser AR Experience (Online).

  4. Google Cloud Anchor (Online).

  5. Google Firebase (Online).

  6. Microsoft Hololens 2 (Online).

  7. Android kernel’s linux power supply class. kernel/common/+/refs/heads/android-4.14-p/Documentation/power /power_supply_class.txt

  8. Apicharttrisorn, K., et al.: Characterization of multi-user augmented reality over cellular networks. In: Proceedings of IEEE SECON (2020)

    Google Scholar 

  9. Apicharttrisorn, K., Ran, X., Chen, J., Krishnamurthy, S.V., Roy-Chowdhury, A.K.: Frugal following: power thrifty object detection and tracking for mobile augmented reality. In: Proceedings of ACM SenSys (2019)

    Google Scholar 

  10. Augmented and Virtual Reality: the First Wave of 5G Killer Apps: Qualcomm - ABI Research.

  11. AT&T integrates 5G with Microsoft Azure to enable next-generation solutions on the edge.

  12. Chen, K., Li, T., Kim, H.S., Culler, D.E., Katz, R.H.: MARVEL: enabling mobile augmented reality with low energy and low latency. In: Proceedings of ACM SenSys (2018)

    Google Scholar 

  13. Chen, X., Ding, N., Jindal, A., Hu, Y.C., Gupta, M., Vannithamby, R.: Smartphone energy drain in the wild: analysis and implications. ACM SIGMETRICS Perform. Eval. Rev. 43(1), 151–164 (2015)

    CrossRef  Google Scholar 

  14. Chen, X., et al.: A fine-grained event-based modem power model for enabling in-depth modem energy drain analysis. In: Proceedings of the ACM on Measurement and Analysis of Computing Systems, vol. 1, no. 2, pp. 1–28 (2017)

    Google Scholar 

  15. Dash, P., Hu, Y.C.: How much battery does dark mode save? An accurate OLED Display Power Profiler for Modern Smartphones. In: Proceedings of ACM MobiSys (2021)

    Google Scholar 

  16. Ding, N., Hu, Y.C.: GfxDoctor: a holistic graphics energy profiler for mobile devices. In: Proceedings of ACM EuroSys (2017)

    Google Scholar 

  17. Ding, N., Wagner, D., Chen, X., Pathak, A., Hu, Y.C., Rice, A.: Characterizing and modeling the impact of wireless signal strength on smartphone battery drain. In: Proceedings of ACM SIGMETRICS (2013)

    Google Scholar 

  18. Dong, M., Zhong, L.: Self-constructive high-rate system energy modeling for battery-powered mobile systems. In: Proceedings of ACM MobiSys (2011)

    Google Scholar 

  19. Huang, J., Qian, F., Gerber, A., Mao, Z.M., Sen, S., Spatscheck, O.: A close examination of performance and power characteristics of 4G LTE networks. In: Proceedings of ACM Mobisys (2012)

    Google Scholar 

  20. Li, Y., Peng, C., Yuan, Z., Li, J., Deng, H., Wang, T.: MobileInsight: extracting and analyzing cellular network information on smartphones. In: Proceedings of ACM MobiCom (2016)

    Google Scholar 

  21. Linux event trace.

  22. Liu, L., Li, H., Gruteser, M.: Edge assisted real-time object detection for mobile augmented reality. In: Proceedings of ACM MobiCom (2019)

    Google Scholar 

  23. Monsoon power monitor.

  24. Narayanan, A., Ramadan, E., Carpenter, J., Liu, Q., Liu, Y., Qian, F., Zhang, Z.L.: A First look at commercial 5G performance on smartphones. In: Proceedings of ACM WWW (2020)

    Google Scholar 

  25. Narayanan, A., et al.: Lumos5G: mapping and predicting commercial MmWave 5G throughput. In: Proceedings of ACM IMC (2020)

    Google Scholar 

  26. Narayanan, A., et al.: A variegated look at 5G in the wild: performance, power, and QoE implications. In: Proceedings of ACM SIGCOMM (2021)

    Google Scholar 

  27. Pathak, A., Hu, Y.C., Zhang, M., Bahl, P., Wang, Y.M.: Fine-grained power modeling for smartphones using system call tracing. In: Proceedings of ACM EuroSys (2011)

    Google Scholar 

  28. Pathak, A., et al.: Measuring and evaluating TCP splitting for cloud services. In: Proceedings of PAM (2010)

    Google Scholar 

  29. “Pokémon Go" maker Niantic wants to turn AR into 5G’s first killer app.

  30. Qiu, H., Ahmad, F., Bai, F., Gruteser, M., Govindan, R.: AVR: augmented vehicular reality. In: Proceedings of ACM MobiSys (2018)

    Google Scholar 

  31. Ran, X., Chen, H., Zhu, X., Liu, Z., Chen, J.: DeepDecision: a mobile deep learning framework for edge video analytics. In: Proceedings of IEEE INFOCOM (2018)

    Google Scholar 

  32. Ran, X., Slocum, C., Gorlatova, M., Chen, J.: ShareAR: communication-efficient multi-user mobile augmented reality. In: Proceedings of ACM HotNets (2019)

    Google Scholar 

  33. Ran, X., Slocum, C., Tsai, Y.Z., Apicharttrisorn, K., Gorlatova, M., Chen, J.: Multi-user augmented reality with communication efficient and spatially consistent virtual objects. In: Proceedings of ACM CoNEXT (2020)

    Google Scholar 

  34. Ren, P., et al.: Edge AR X5: An edge-assisted multi-user collaborative framework for mobile web augmented reality in 5G and beyond. IEEE Trans. Cloud Comput. (2020)

    Google Scholar 

  35. Schulman, A., Schmid, T., Dutta, P., Spring, N.: Phone power monitoring with BattOr. In: Proceedings of ACM MobiCom (2011)

    Google Scholar 

  36. Shye, A., Scholbrock, B., Memik, G.: Into the wild: studying real user activity patterns to guide power optimizations for mobile architectures. In: Proceedings of IEEE/ACM MICRO (2009)

    Google Scholar 

  37. Sun, L., Sheshadri, R.K., Zheng, W., Koutsonikolas, D.: Modeling WiFi active power/energy consumption in smartphones. In: Proceedings of IEEE ICDCS (2014)

    Google Scholar 

  38. Telcos seek killer app to recoup billions spent on 5G.

  39. Verizon teams with NFL, AWS to showcase 5G edge.

  40. Wang, Z., Qian, Z., Xu, Q., Mao, Z.M., Zhang, M.: An untold story of middleboxes in cellular networks. In: Proceedings of ACM SIGCOMM (2011)

    Google Scholar 

  41. Xu, F., Liu, Y., Li, Q., Zhang, Y.: V-edge: fast self-constructive power modeling of smartphones based on battery voltage dynamics. In: Proceedings of USENIX NSDI (2013)

    Google Scholar 

  42. Yue, C., Sen, S., Wang, B., Qin, Y., Qian, F.: Energy considerations for ABR video streaming to smartphones: measurements, models and insights. In: Proceedings of ACM Multimedia Systems (2020)

    Google Scholar 

  43. Zhang, L., et al.: Accurate online power estimation and automatic battery behavior based power model generation for smartphones. In: Proceedings of IEEE/ACM/IFIP CODES+ISSS (2010)

    Google Scholar 

  44. Zhang, W., Han, B., Hui, P., Gopalakrishnan, V., Zavesky, E., Qian, F.: CARS: collaborative augmented reality for socialization. In: Proceedings of ACM HotMobile (2018)

    Google Scholar 

Download references


We thank our shepherd Arani Bhattacharya and the anonymous reviewers for their helpful comments. This work was supported in part by NSF grant 2112778-CNS.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Moinak Ghoshal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghoshal, M. et al. (2022). Can 5G mmWave Support Multi-user AR?. In: Hohlfeld, O., Moura, G., Pelsser, C. (eds) Passive and Active Measurement. PAM 2022. Lecture Notes in Computer Science, vol 13210. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98784-8

  • Online ISBN: 978-3-030-98785-5

  • eBook Packages: Computer ScienceComputer Science (R0)