Skip to main content

The Role of Nutraceuticals as Food and Medicine, Types and Sources

  • Chapter
  • First Online:
Food and Agricultural Byproducts as Important Source of Valuable Nutraceuticals

Abstract

Nutraceuticals are food or parts of food that contain bioactives with physiological as well as medicinal effects. They can help maintain human health and are useful in preventing numerous acute and chronic diseases. Various food products such as prebiotics, probiotics, dietary fibers, fatty acids (polyunsaturated), antioxidants, spices, herbs, nutrients and dietary supplements can be considered nutraceuticals. Byproducts from food and agricultural sources are also valuable source of nutraceuticals e.g. leaves, peels, stems, seed flours. Nutraceuticals possess both nutritional as well as therapeutic value. Nutraceuticals are helpful for the prevention of various diseases such as overweight, CVD, cancer, osteoporosis, arthritis, increased sugar and cholesterol levels, etc. This chapter provides a preamble for the book about nutraceuticals, the various types, sources and importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Egbuna C, Tupas GD (eds) (2020) Functional foods and nutraceuticals—bioactive components, formulations and innovations, 1st edn. Springer Nature, Cham, 646 pp

    Google Scholar 

  2. Brower V (1999) Nutraceuticals: poised for a healthy slice of the healthcare market. Nat Biotechnol 16:728–731. https://doi.org/10.1038/nbt0898-728

    Article  Google Scholar 

  3. Dudeja P, Gupta RK (2017) Nutraceuticals: food safety in the 21st century. Academic, Cambridge

    Google Scholar 

  4. Om P, Gulati A, Ottaway PB (2006) Legislation relating to nutraceuticals in the European Union with a particular focus on botanical-sourced products. Toxicology 22:75–87. https://doi.org/10.1016/j.tox.2006.01.014. Epub 2006 Feb 17

    Article  CAS  Google Scholar 

  5. Kumar G, Kalam N, Ansari SH (2013) Current concepts and prospects of herbal nutraceutical: a review. J Adv Pharm Technol Res 4(1):4–8. https://doi.org/10.4103/2231-4040.107494

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kalia AN (2005) Textbook of industrial pharmacognosy. CBS Publishers, New Delhi

    Google Scholar 

  7. Jain N, Ramawat KG (2013) Nutraceuticals and antioxidants in prevention of disease. Research Gate 2573

    Google Scholar 

  8. Egbuna C, Mishra AP, Goyal MR (eds) (2021) Preparation of phytopharmaceuticals for the management of disorders. Academic, New York. https://doi.org/10.1016/C2019-0-01420-3

    Book  Google Scholar 

  9. Ganapathy M, Bhunia S (2016) Nutraceuticals: the new generation therapeutics. Adv Tech Biol Med 4:2. https://doi.org/10.4172/2379-1764.1000179

    Article  Google Scholar 

  10. Verma G, Mishra M (2016) A review on nutraceuticals: classification and its role in various diseases. Int J Pharm Ther 7(4):152–160

    Google Scholar 

  11. Gunness P, Gidley MJ (2010) Mechanisms underlying the cholesterol-lowering properties of soluble dietary fibre polysaccharides. Food Funct 1(2):149–155. https://doi.org/10.1039/c0fo00080a

    Article  CAS  PubMed  Google Scholar 

  12. Yikyung P, Louise B, Amy FS, Albert H, Arthur S (2009) Dietary fiber intake and risk of breast cancer in postmenopausal women: the National Institutes of Health–AARP Diet and Health Study. Am J Clin Nutr 90(3):664–671. https://doi.org/10.3945/ajcn.2009.27758

    Article  CAS  Google Scholar 

  13. Chunye C, Yuan Z, Jing X, Hongting Z, Jun L, Rong F, Wenyi Z, Lijia Y, Yu Q, Shihui C, Yong Z, Ying W, Jing W, Mantian M, Jian W (2016) Therapeutic effects of soluble dietary fiber consumption on type 2 diabetes mellitus. Exp Ther Med 12(2):1232–1242. https://doi.org/10.3892/etm.2016.3377

    Article  CAS  Google Scholar 

  14. Scheppach W, Bartram HP, Richter F (1995) Role of short-chain fatty acids in the prevention of colorectal cancer. Eur J Cancer 31A(7–8):1077–1080. https://doi.org/10.1016/0959-8049(95)00165-f

    Article  CAS  PubMed  Google Scholar 

  15. Hiroshi H, Satoko H, Yoritaka A, Shuhachi K (1999) Short-chain fatty acids suppress cholesterol synthesis in rat liver and intestine. J Nutr 129(5):942–948. https://doi.org/10.1093/jn/129.5.942

    Article  Google Scholar 

  16. Dingra D, Michael M, Rajput H, Patil RT (2012) Dietary fibre in foods: a review. J Food Sci Technol 49(3):255–266. https://doi.org/10.1007/s13197-011-0365-5

    Article  CAS  Google Scholar 

  17. Elena D, Gaetana C, Sara A, Chiara T, Amedeo F, Gaetano A, Daniela P, Maria GS, Augusto O (2015) Vitamin A, cancer treatment and prevention: the new role of cellular retinol binding proteins. BioMed Res Int 2015:624627. https://doi.org/10.1155/2015/624627

    Article  CAS  Google Scholar 

  18. Akram M, Munir N, Daniyal M, Egbuna C, Găman M, Onyekere PF, Olatunde A (2020) Vitamins and minerals: types, sources and their functions. In: Egbuna C, Dable Tupas G (eds) Functional foods and nutraceuticals. Springer, Cham. https://doi.org/10.1007/978-3-030-42319-3_9

    Chapter  Google Scholar 

  19. Saliha R, Syed TR, Ahmed F, Ahmad A, Abbas S, Mahdi F (2014) The role of vitamin E in human health and some diseases. Sultan Qaboos Univ Med J 14(2):157–165

    Google Scholar 

  20. Nader P, Gholamreza H, Reza Y, AliAsghar H (2019) Wound healing effects of topical vitamin K: a randomized controlled trial. Indian J Pharmacol 51(2):88. https://doi.org/10.4103/ijp.IJP_183_18

    Article  Google Scholar 

  21. Amanda B, Nicole W (2016) Vitamin C in the prevention and treatment of the common cold. Am J Lifestyle Med 10(3):181–183. https://doi.org/10.1177/1559827616629092

    Article  Google Scholar 

  22. Carlos AC, Ospina M, Orlando N (2020) Vitamins in the nervous system: current knowledge of the biochemical modes of action and synergies of thiamine, pyridoxine, and cobalamin. CNS Neurosci Ther 26(1):5–13. https://doi.org/10.1111/cns.13207

    Article  Google Scholar 

  23. Valeria G, Matteo S, Isabella S, Maria VC (2019) Niacin in the central nervous system: an update of biological aspects and clinical applications. Int J Mol Sci 20(4):974. https://doi.org/10.3390/ijms20040974

    Article  CAS  Google Scholar 

  24. Marcelina P, Seth S, Hanjo H (2018) Vitamin B6 and its role in cell metabolism and physiology. Cell 7(7):84. https://doi.org/10.3390/cells7070084

    Article  CAS  Google Scholar 

  25. Mark JK, Prem P (2004) New insights into erythropoiesis: the roles of folate, vitamin B12, and iron. Annu Rev Nutr 24(1):105–131. https://doi.org/10.1146/annurev.nutr.24.012003.132306

    Article  CAS  Google Scholar 

  26. Joseph B, Antonysunil A, Jinous S, Ponnusamy S (2020) Low vitamin B12 and lipid metabolism: evidence from pre-clinical and clinical studies. Nutrients 12(7):1925. https://doi.org/10.3390/nu12071925

    Article  CAS  Google Scholar 

  27. Lubna M (2014) The metabolic processes of folic acid and vitamin B12 deficiency. J Health Res Rev 1(1):5–9. https://doi.org/10.4103/2394-2010.143318

    Article  Google Scholar 

  28. Butterworth CE Jr (1996) A bendich, folic acid and the prevention of birth defects. Annu Rev Nutr 16:73–97. https://doi.org/10.1146/annurev.nu.16.070196.000445

    Article  CAS  PubMed  Google Scholar 

  29. Aleksandra C, Sylwia SJ, Areta H, Jacek T, Swierczynski J, Sledzinski T, Ewa S (2020) The pathophysiological role of CoA. Int J Mol Sci 21(23):9057. https://doi.org/10.3390/ijms21239057

    Article  CAS  Google Scholar 

  30. Pravina P, Didwagh S, Mokashi A (2013) Calcium and its role in human body. Int J Res Pharmaceut Biomed Sci 4(2):659–667

    CAS  Google Scholar 

  31. Dunn J, Mythen MG (2016) Physiology of oxygen transport. B J A Educ 16(10):341–348. https://doi.org/10.1093/BJAED/MKW012

    Article  Google Scholar 

  32. Nahid F, Elham E, Mahboube V, Naser T, Manizhe HY (2010) Evaluating the effect of magnesium and magnesium plus vitamin B6 supplement on the severity of premenstrual syndrome. Iran J Nurs Midwifery Res 15(1):401–405

    Google Scholar 

  33. John AR (2013) RNA function and phosphorus use by photosynthetic organisms. Front Plant Sci 4:536. https://doi.org/10.3389/fpls.2013.00536

    Article  Google Scholar 

  34. Andrea T, Tatiana B (2010) Nutrient utilization in humans: metabolism pathways. Nat Educ 3(9):11

    Google Scholar 

  35. Harris ED, Rayton JK, Balthrop JE, DiSilvestro RA, Quevedo M (1980) Copper and the synthesis of elastin and collagen. Ciba Found Symp 79:163–182. https://doi.org/10.1002/9780470720622.ch9

    Article  CAS  PubMed  Google Scholar 

  36. Wai YC, Owen MR (1980) The role of copper in iron metabolism. Ann Clin Lab Sci 10(4):338–344

    Google Scholar 

  37. Hye RC (2014) Iodine and thyroid function. Ann Pediatr Endocrinol Metab 19(1):8–12. https://doi.org/10.6065/apem.2014.19.1.8

    Article  Google Scholar 

  38. Carina B, Andreas G, Sandra K, Sebastian B, William M, Gil H, Christian S (2015) Selenium and its supplementation in cardiovascular disease—what do we know? Nutrients 7(5):3094–3118. https://doi.org/10.3390/nu7053094

    Article  CAS  Google Scholar 

  39. Deborah AF, Haim B (2020) The role of zinc in male fertility. Int J Mol Sci 21(20):7796. https://doi.org/10.3390/ijms21207796

    Article  CAS  Google Scholar 

  40. Nicola L, Marta F (2016) Carnitine transport and fatty acid oxidation. Biochim Biophys Acta Mol Cell Res 1863(10):2422–2435. https://doi.org/10.1016/j.bbamcr.2016.01.023

    Article  CAS  Google Scholar 

  41. Mehedint MG, Zeisel SH (2013) Choline’s role in maintaining liver function: new evidence for epigenetic mechanisms. Curr Opin Clin Nutr Metab Care 16(3):339–345. https://doi.org/10.1097/MCO.0b013e3283600d46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mohsen M, Simin N, Meydan JB, Macauley J, Blumberg J (1985) Influence of dietary vitamin F and selenium on the ex-vivo synthesis of prostaglandin E2 in brain regions of young and old rats. Prostaglandins Leukot Med 18(3):337–346. https://doi.org/10.1016/0262-1746(85)90066-6

    Article  Google Scholar 

  43. Simmons DA (1989) Mechanism of glucose-induced (Na+, K+)-ATPase inhibition in aortic wall of rabbits. Diabetologia 32:402–408. https://doi.org/10.1007/BF00271258

    Article  CAS  PubMed  Google Scholar 

  44. Lorenzo B, Roy MK, Hay AM, Morrison EJ, Stefanoni D, Xiaoyun F, Tamir K, Steve K, Larry JD (2020) Mars stone, impact of taurine on red blood cell metabolism and implications for blood storage. Transfusion 60(6):1212–1226. https://doi.org/10.1111/trf.15810

    Article  CAS  Google Scholar 

  45. Jang HY, Kong HS, Park CK (2006) Effects of taurine on sperm characteristics during in vitro storage of boar semen. Asian Australas J Anim Sci 19(11):1561–1565. https://doi.org/10.5713/ajas.2006.1561

    Article  CAS  Google Scholar 

  46. Adetunji CO, Akram M, Mtewa AG, Jeevanandam J, Egbuna C, Ogodo AC et al (2021) Biochemical and pharmacotherapeutic potentials of lycopene in drug discovery. In: Egbuna C, Mishra AP, Goyal MR (eds) Preparation of phytopharmaceuticals for the management of disorders. Academic, New York, pp 307–360. ISBN 9780128202845. https://doi.org/10.1016/B978-0-12-820284-5.00015-0

    Chapter  Google Scholar 

  47. Wilhelm S, Helmut S (2012) β-carotene and other carotenoids in protection from sunlight. Am J Clin Nutr 96(5):1179S–1184S. https://doi.org/10.3945/ajcn.112.034819

    Article  CAS  Google Scholar 

  48. Liwen F, Kailai N, Hui J, Wei F (2019) Effects of lutein supplementation in age-related macular degeneration. PLoS One 14(12):e0227048. https://doi.org/10.1371/journal.pone.0227048

    Article  CAS  Google Scholar 

  49. Nesaretnam K, Selvaduray KR, Razak A (2010) Effectiveness of tocotrienol-rich fraction combined with tamoxifen in the management of women with early breast cancer: a pilot clinical trial. Breast Cancer Res 12:81. https://doi.org/10.1186/bcr2726

    Article  CAS  Google Scholar 

  50. Ramaswamy K, Gupta SC, Kim JH, Aggarwal BB (2012) Tocotrienols fight cancer by targeting multiple cell signaling pathways. Genes Nutr 7(1):43–52. https://doi.org/10.1007/s12263-011-0220-3

    Article  CAS  Google Scholar 

  51. Cheng YT, Chen YH, Chien YW, Huang YH, Lins SH (2010) Effect of soy saponin on the growth of human colon cancer cells. World J Gastroenterol 16(27):3371–3376. https://doi.org/10.3748/wjg.v16.i27.3371

    Article  CAS  Google Scholar 

  52. Kim DC, Ku SK, Bae JS (2012) Anticoagulant activities of curcumin and its derivative. BMB Rep 45(4):221–226. https://doi.org/10.5483/bmbrep.2012.45.4.221

    Article  CAS  PubMed  Google Scholar 

  53. Akram M, Jabeen F, Riaz M, Khan FS, Okushanova E, Imran M, Shariati MA, Riaz T, Egbuna C, Ezeofor NJ (2021) Health benefits of glucosinolate isolated from cruciferous and other vegetables. In: Egbuna C, Mishra AP, Goyal MR (eds) Preparation of phytopharmaceuticals for the management of disorders. Academic, New York, pp 361–371

    Chapter  Google Scholar 

  54. Ahmad A, Bernhard B, Yiwei L, Bin B, Dejuan K, Ali S, Banerjee S, Sarkar FH (2013) Perspectives on the role of isoflavones in prostate cancer. Am Assoc Pharm Sci 15(4) 991–1000. https://doi.org/10.1208/s12248-013-9507-1

  55. Calado A, Neves PM, Teresa S, Ravasco P (2018) The effect of flaxseed in breast cancer: a literature review. Front Nutr 5:4. https://doi.org/10.3389/fnut.2018.00004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Erika F, Milène V, Jennifer TM, Sébastien T, Blachère JC, Bégin ME, Brenna JT, Windust A, Cunnane SC (2006) Omega-3 fatty acids, energy substrates, and brain function during aging. Prostaglandins Leukot Essent Fatty Acids 75(3):213–220. https://doi.org/10.1016/j.plefa.2006.05.011

    Article  CAS  Google Scholar 

  57. Siri-Tarino PW, Sun Q, Hu FB, Krauss RM (2010) Saturated fatty acids and risk of coronary heart disease: modulation by replacement nutrients. Curr Atheroscler Rep 12(6):384–390. https://doi.org/10.1007/s11883-010-0131-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Verna EC (2010) Use of probiotics in gastrointestinal disorders: what to recommend? Ther Adv Gastroenterol 3(5):307–319. https://doi.org/10.1177/1756283X10373814

    Article  Google Scholar 

  59. Loveren CV (2004) Sugar alcohols: what is the evidence for caries-preventive and caries-therapeutic effects? Caries Res 38:286–293. https://doi.org/10.1159/000077768

    Article  CAS  PubMed  Google Scholar 

  60. Gupta S, Parvez N, Sharma PK (2015) Nutraceuticals as functional foods. J Nutr Ther 4:64–72. https://doi.org/10.6000/1929-5634.2015.04.02

    Article  CAS  Google Scholar 

  61. Santos CM, Abreu CMP, Freire JM, Queiroz ER, Mendonça MM (2014) Chemical characterization of the flour of peel and seed from two papaya cultivars. Food Sci Technol (Campinas) 34(2):353–357. https://doi.org/10.1590/fst.2014.0048

    Article  Google Scholar 

  62. Aref HL, Salah KBH, Chaumont JP, Fekih AW, Aouni M, Said K (2010) In vitro antimicrobial activity of four Ficus carica latex fractions against resistant human pathogens. Pak J Pharm Sci 23:53–58

    PubMed  Google Scholar 

  63. Rajaei A, Barzegar M, Mobarez AM, Sahari MA, Esfahani ZH (2010) Antioxidant, antimicrobial and antimutagenicity activities of pistachio (Pistachia vera) green hull extract. Food Chem Toxicol 48:107–112. https://doi.org/10.1016/j.fct.2009.09.023

    Article  CAS  PubMed  Google Scholar 

  64. Janjua S, Shahid M, Fakhir-i-Abbas (2013) Phytochemical analysis and in vitro antibacterial activity of root peel extract of Raphanus sativus L. var niger. Adv Med Plant Res 1:1–7

    Google Scholar 

  65. Egbuna C, Awuchi CG, Kushwaha G, Rudrapal M, Patrick-Iwuanyanwu KC, Singh O, Odoh UE, Khan J, Jeevanandam J, Kumarasamy S, Chukwube VO, Narayanan M, Palai S, Găman MA, Uche CZ, Ogaji DS, Ezeofor NJ, Mtewa AG, Patrick-Iwuanyanwu CC, Kesh SS, Shivamallu C, Saravanan K, Tijjani H, Akram M, Ifemeje JC, Olisah MC, Chikwendu CJ (2021) Bioactive compounds effective against type 2 diabetes mellitus: a systematic review. Curr Top Med Chem 21(12):1067–1095. https://doi.org/10.2174/1568026621666210509161059

    Article  CAS  PubMed  Google Scholar 

  66. Khan J, Deb PK, Priya S, Medina KD, Devi R, Walode SG, Rudrapal M (2021) Dietary flavonoids: cardioprotective potential with antioxidant effects and their pharmacokinetic, toxicological and therapeutic concerns. Molecules 26:4021. https://doi.org/10.3390/molecules26134021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Egbuna C, Hassan S (eds) (2021) Dietary phytochemicals: a source of novel bioactive compounds for the treatment of obesity, cancer and diabetes. Springer, Cham. https://doi.org/10.1007/978-3-030-72999-8

    Book  Google Scholar 

  68. Genovese S, Fiorito S, Locatelli M, Carlucci G, Epifano F (2014) Analysis of biologically active oxyprenylated ferulic acid derivatives in citrus fruits. Plant Foods Hum Nutr 69:255–260. https://doi.org/10.1007/s11130-014-0427-8

    Article  CAS  PubMed  Google Scholar 

  69. Epifano F, Genovese S (2013) Recent acquisitions on naturally occurring oxyprenylated secondary plant metabolites. In: Brahmachari G (ed) Chemistry and pharmacology of naturally occurring bioactive compounds, 1st edn. CRC Press, Boca Raton, pp 239–257. https://doi.org/10.1201/b13867

    Chapter  Google Scholar 

  70. Saravanan K, Mallikarjuna Aradhya S (2011) Potential nutraceutical food beverage with antioxidant properties from banana plant bio-waste (pseudostem and rhizome). Food Funct 2:603–610. https://doi.org/10.1039/c1fo10071h

    Article  CAS  PubMed  Google Scholar 

  71. Montelongo RG, Lobo MG, Gonalez M (2010) Antioxidant activity in banana peel extract: testing extraction conditions and related bioactive compounds. Food Chem 119:1030–1039. https://doi.org/10.1016/j.foodchem.2009.08.012

    Article  CAS  Google Scholar 

  72. Kołodziejczyk K, Markowski J, Kosmala M, Krol B, Płocharski W (2007) Apple pomace as a potential source of nutraceutical products. Pol J Food Nutr Sci 57:291–295

    Google Scholar 

  73. Bhushan S, Kalia K, Sharma M, Singh Band Ahuja PS (2008) Processing of apple pomace for bioactive molecules. Crit Rev Biotechnol 28:285–296. https://doi.org/10.1080/07388550802368895

    Article  CAS  PubMed  Google Scholar 

  74. Fromm M, Bayha S, Carle R, Kammerer DR (2012) Characterization and quantitation of low and high molecular weight phenolic compounds in apple seeds. J Agric Food Chem 60:1232–1242. https://doi.org/10.1021/jf204623d

    Article  CAS  PubMed  Google Scholar 

  75. Walia MK, Rawat S, Bhushan Y, Padwada S, Singh B (2014) Fatty acid composition, physicochemical properties, antioxidant and cytotoxic activity of apple seed oil obtained from apple pomace. J Sci Food Agric 94:929–934. https://doi.org/10.1002/jsfa.6337

    Article  CAS  PubMed  Google Scholar 

  76. Arogba SS (2000) Mango (Mangifera indica) kernel: chromatographic analysis of the tannin, and stability study of the associated polyphenol oxidase activity. J Food Compos Anal 13:149–156. https://doi.org/10.1006/jfca.1999.0838

    Article  CAS  Google Scholar 

  77. Martínez R, Torres P, Meneses MA, Figueroa JG, Pérez-Álvarez JA, Viuda-Martos M (2012) Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate. Food Chem 135:1520–1526. https://doi.org/10.1016/j.foodchem.2012.05.057

    Article  CAS  PubMed  Google Scholar 

  78. Serna-Cock L, García-Gonzales E, Torres-León C (2016) Agro-industrial potential of the mango peel based on its nutritional and functional properties. Food Rev Int 32:364–376. https://doi.org/10.1080/87559129.2015.1094815

    Article  CAS  Google Scholar 

  79. Maier T, Schieber T, Kammerer DR, Carle R (2009) Residues of grape (Vitis vinifera L.) seed oil production as a valuable source of phenolic antioxidants. Food Chem 112:551–559. https://doi.org/10.1016/j.foodchem.2008.06.005

    Article  CAS  Google Scholar 

  80. Abdrabba S, Hussein S (2015) Chemical composition of pulp, seed and peel of red grape from Libya. Global J Sci Res 3(2):6–11. https://doi.org/10.12691/jfnr-7-2-7

    Article  CAS  Google Scholar 

  81. Manso T, Gallardo B, Salvá A, Guerra-Rivas C, Mantecón AR, Lavín P, de la Fuente MA (2016) Influence of dietary grape pomace combined with linseed oil on fatty acid profile and milk composition. J Dairy Sci 99:1111–1120. https://doi.org/10.3168/jds.2015-9981

    Article  CAS  PubMed  Google Scholar 

  82. Castro-Vargas HI, Baumann W, Ferreira SR, Parada-Alfonso F (2019) Valorization of papaya (Carica papaya L.) agroindustrial waste through the recovery of phenolic antioxidants by supercritical fluid extraction. J Food Sci Technol 56(6):3055–3066. https://doi.org/10.1007/s13197-019-03795-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu L, Xie B, Cao S, Yang E, Xu X, Guo S (2007) A-type procyanidins from Litchi chinensis pericarp with antioxidant activity. Food Chem 105:1446–1451. https://doi.org/10.1016/j.foodchem.2007.05.022

    Article  CAS  Google Scholar 

  84. Nagendra PK, Yang B, Yang S, Chen Y, Zhao M, Ashraf M, Jiang Y (2009) Identification of phenolic compounds and appraisal of antioxidant and antityrosinase activities from litchi (Litchi sinensis Sonn.) seeds. Food Chem 116:1–7. https://doi.org/10.1016/j.foodchem.2009.01.079

    Article  CAS  Google Scholar 

  85. Li S, Chen L, Yang T, Wu Q, Lv Z, Xie B, Sun Z (2013) Increasing antioxidant activity of procyanidin extracts from the pericarp of Litchi chinensis processing waste by two probiotic bacteria bioconversions. J Agric Food Chem 61:2506–2512. https://doi.org/10.1021/jf305213e

    Article  CAS  PubMed  Google Scholar 

  86. Deng GF, Xu XR, Guo YJ, Xia EQ, Li S, Wu S, Chen F, Ling WH, Li HB (2012) Determination of antioxidant property and their lipophilic and hydrophilic phenolic contents in cereal grains. J Funct Foods 4:906–914. https://doi.org/10.1016/j.jff.2012.06.008

    Article  CAS  Google Scholar 

  87. Han NM, May CY (2010) Determination of antioxidants in oil palm leaves (Elaeis guineensis). Am J Appl Sci 7:1243–1247. https://doi.org/10.3844/ajassp.2010.1243.1247

    Article  CAS  Google Scholar 

  88. Han NM, May CY (2012) Determination of antioxidants in oil palm empty fruit bunches. Am J Appl Sci 9:1862–1867. https://doi.org/10.3844/ajassp.2012.1862.1867

    Article  Google Scholar 

  89. Ofori-Boateng C, Lee K (2013) Sustainable utilization of oil palm wastes for bioactive phytochemicals for the benefit of the oil palm and nutraceutical industries. Phytochem Rev 12(1):173–190. https://doi.org/10.1007/s11101-013-9270-z

    Article  CAS  Google Scholar 

  90. Akhtar S, Ismail T, Fraternale D, Sestili P (2015) Pomegranate peel and peel extracts: chemistry and food features. Food Chem 174:417–425. https://doi.org/10.1016/j.foodchem.2014.11.035

    Article  CAS  PubMed  Google Scholar 

  91. Orgil O, Schwartz E, Baruch L, Matityahu I, Mahajna J, Amir R (2014) The antioxidative and anti-proliferative potential of non-edible organs of the pomegranate fruit and tree. LWT Food Sci Technol 58:571–577. https://doi.org/10.1016/j.lwt.2014.03.030

    Article  CAS  Google Scholar 

  92. Varzakas T, Zakynthinos G, Verpoort F (2016) Plant food residues as a source of nutraceuticals and functional foods. Foods (Basel, Switzerland) 5(4):88. https://doi.org/10.3390/foods5040088

    Article  CAS  PubMed  Google Scholar 

  93. Maimunah MA, Norhashila H, Samsuzana AA, Ola L (2020) Pineapple (Ananas comosus): a comprehensive review of nutritional values, volatile compounds, health benefits, and potential food products. Food Res Int 137:109675. https://doi.org/10.1016/j.foodres.2020.109675

    Article  CAS  Google Scholar 

  94. Lima RS, Ferreira SRS, Vitali L, Block JM (2018) May the superfruit red guava and its processing waste be a potential ingredient in functional foods? Food Res Int 115:451–459. https://doi.org/10.1016/j.foodres.2018.10.053

    Article  CAS  PubMed  Google Scholar 

  95. Angulo-López JE, Flores-Gallegos AC, Torres-León C, Ramírez-Guzmán KN, Martínez GA, Aguilar CN (2021) Guava (Psidium guajava L.) fruit and valorization of industrialization by-products. Processes 9:1075. https://doi.org/10.3390/pr9061075

    Article  CAS  Google Scholar 

  96. Strati IF, Oreopoulou V (2014) Recovery of carotenoids from tomato processing by-products—a review. Food Res Int 65:311–321. https://doi.org/10.1016/j.foodres.2014.09.032

    Article  CAS  Google Scholar 

  97. Zeyada NN, Zeitoum MAM, Barbary OM (2008) Utilization of some vegetables and fruit waste as natural antioxidants. Alexandria J Food Sci Technol 5:1–11

    Article  Google Scholar 

  98. Kallel F, Driss D, Chaari F, Belghith L, Bouaziz F, Ghorbel R, Chaabouni SE (2014) Garlic (Allium sativum L.) husk waste as a potential source of phenolic compounds: influence of extracting solvents on its antimicrobial and antioxidant properties. Ind Crops Prod 62:34–41. https://doi.org/10.1016/j.indcrop.2014.07.047

    Article  CAS  Google Scholar 

  99. Chantaro P, Devahastin S, Chiewchan N (2008) Production of antioxidant high dietary fiber powder from carrot peels. LWT Food Sci Technol 41(10):1987–1994. https://doi.org/10.1016/j.lwt.2007.11.013

    Article  CAS  Google Scholar 

  100. Wadhwa M, Bakshi MPS (2013) Utilization of fruit and vegetable wastes as livestock feed and as substrates for generation of other value-added products. Rap Publication 4: 1–67. E-ISBN 978-92-5-107632-3 (pdf)

    Google Scholar 

  101. Sagar NA, Pareek S, Sharma S, Yahia EM, Lobo MG (2018) Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization. Compr Rev Food Sci Food Saf 17(3):512–531. https://doi.org/10.1111/1541-4337.12330

    Article  CAS  PubMed  Google Scholar 

  102. Sainvitu P, Nott K, Richard G, Blacker C, Jerome C, Wathelet JP, Deleu M (2012) Structure, properties and obtention routes of flaxseed lignan secoisolariciresinol: a review biotechnology. Agron Soc Environ 16:115–124

    Google Scholar 

  103. Oliveira VB, Yamada LT, Fagg CW, Brandão MG (2012) Native foods from Brazilian biodiversity as a source of bioactive compounds. Food Res Int 48(1):170–179. https://doi.org/10.1016/j.foodres.2012.03.011

    Article  CAS  Google Scholar 

  104. Kaur B, Chakraborty D, Kaur G (2013) Biotransformation of rice bran to ferulic acid by pediococcal isolates. Appl Biochem Biotechnol 170:854–867. https://doi.org/10.1007/s12010-013-0223-1

    Article  CAS  PubMed  Google Scholar 

  105. Wang X, Yan JY, Wang YW, Huang MT, Ho CT, Huang Q (2008) Enhancing anti-inflammation activity of curcumin through O/W nano-emulsions. Food Chem 108:419–424. https://doi.org/10.1016/j.foodchem.2007.10.086

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, A.P. et al. (2022). The Role of Nutraceuticals as Food and Medicine, Types and Sources. In: Egbuna, C., Sawicka, B., Khan, J. (eds) Food and Agricultural Byproducts as Important Source of Valuable Nutraceuticals. Springer, Cham. https://doi.org/10.1007/978-3-030-98760-2_1

Download citation

Publish with us

Policies and ethics