Skip to main content

Abstract

Firefighting is a dangerous activity that puts firefighters into conditions that threaten their safety in order to save lives. To reduce firefighter injuries and limit their exposure to hazardous conditions, a range of technologies have been developed to improve their planning, situational awareness, and firefighting activities. These technologies allow firefighters to be more intelligent about their activities to reduce the likelihood of injury and be more effective. This chapter provides an overview of technologies currently being used as well as those being developed to support more intelligent firefighting. This includes monitoring devices, imaging systems, and robotic platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Campbell and B. Evarts, “United States Firefighter Injuries in 2019,” NFPA Res. Rep., no. November, p. 15, 2020.

    Google Scholar 

  2. R. F. Fahy, J. T. Petrolli, and J. L. Molis, “Firefighter Fatalities in the US-2019,” NFPA Res. Rep., no. June, pp. 1–26, 2019.

    Google Scholar 

  3. C. Grant, A. Hamins, N. Bryner, A. Jones, and G. Koepke, “Research Roadmap for Smart Fire Fighting,” Summ. Report, NIST Spec. Publ. 1191, p. 247, 2015.

    Google Scholar 

  4. G. Marbach, M. Loepfe, and T. Brupbacher, “An image processing technique for fire detection in video images,” Fire Saf. J., vol. 41, no. 4, pp. 285–289, 2006.

    Google Scholar 

  5. K. Muhammad, J. Ahmad, I. Mehmood, S. Rho, and S. W. Baik, “Convolutional Neural Networks Based Fire Detection in Surveillance Videos,” IEEE Access, vol. 6, pp. 18174–18183, 2018.

    Google Scholar 

  6. A. E. Çetin et al., “Video fire detection - Review,” Digit. Signal Process. A Rev. J., vol. 23, no. 6, pp. 1827–1843, 2013.

    Google Scholar 

  7. J. L. Hodges, B. Y. Lattimer, and K. D. Luxbacher, “Compartment fire predictions using transpose convolutional neural networks,” Fire Saf. J., vol. 108, no. November 2018, 2019.

    Google Scholar 

  8. W. C. Tam et al., “Generating Synthetic Sensor Data to Facilitate Machine Learning Paradigm for Prediction of Building Fire Hazard,” Fire Technol., 2020.

    Google Scholar 

  9. B. Y. Lattimer, J. L. Hodges, A. M. Lattimer, “Using Machine Learning in Physics-based Simulation of Fire,” Fire Saf. J., 2020.

    Google Scholar 

  10. FLIR, “Packbot - Robots: Your Guid to the World of Robotics,” IEEE, 2020.

    Google Scholar 

  11. G. Lab, “x-RHex - Robots : Your Guid to the World of Robotics,” IEEE, 2020.

    Google Scholar 

  12. B. Dynamics, “BigDog - Robots: Your Guide to the World of Robotics,” IEEE, 2020.

    Google Scholar 

  13. J. W. Starr and B. Y. Lattimer, “Application of thermal infrared stereo vision in fire environments,” 2013 IEEE/ASME Int. Conf. Adv. Intell. Mechatronics Mechatronics Hum. Wellbeing, AIM 2013, pp. 1675–1680, 2013.

    Google Scholar 

  14. J. W. Starr and B. Y. Lattimer, “A comparison of IR stereo vision and LIDAR for use in fire environments,” Proc. IEEE Sensors, pp. 3–6, 2012.

    Google Scholar 

  15. J. W. Starr and B. Y. Lattimer, “Evaluation of Navigation Sensors in Fire Smoke Environments,” Fire Technol., vol. 50, no. 6, pp. 1459–1481, 2014.

    Google Scholar 

  16. J. H. Kim, S. Jo, and B. Y. Lattimer, “Feature Selection for Intelligent Firefighting Robot Classification of Fire, Smoke, and Thermal Reflections Using Thermal Infrared Images,” J. Sensors, vol. 2016, 2016.

    Google Scholar 

  17. J.-H. Kim, Y. Sung, and B. Y. Lattimer, “Bayesian estimation based real-time fire-heading in smoke-filled indoor environments using thermal imagery,” in Proceedings - IEEE International Conference on Robotics and Automation, 2017.

    Google Scholar 

  18. J. H. Kim and B. Y. Lattimer, “Real-time probabilistic classification of fire and smoke using thermal imagery for intelligent firefighting robot,” Fire Saf. J., vol. 72, pp. 40–49, 2015.

    Google Scholar 

  19. N. Kerle, F. Nex, M. Gerke, D. Duarte, and A. Vetrivel, “UAV-based structural damage mapping: A review,” ISPRS Int. J. Geo-Information, vol. 9, no. 1, pp. 1–23, 2019.

    Google Scholar 

  20. F. Nex, D. Duarte, A. Steenbeek, and N. Kerle, “Towards real-time building damage mapping with low-cost UAV solutions,” Remote Sens., vol. 11, no. 3, pp. 1–14, 2019.

    Google Scholar 

  21. N. 2400, “Standard for Small Unmanned Aircraft Systems (sUAS) Used for Public Safety Operations,” NFPA, 2019.

    Google Scholar 

  22. T. Chung, “DARPA Subterranean (SubT) Challenge,” https://www.darpa.mil/program/darpa-subterranean-challenge, 2018.

  23. A. Fonseca, T. S. Mayor, and J. B. L. M. Campos, “Guidelines for the specification of a PCM layer in firefighting protective clothing ensembles,” Appl. Therm. Eng., vol. 133, no. March 2017, pp. 81–96, 2018.

    Google Scholar 

  24. H. L. Phelps, S. D. Watt, H. S. Sidhu, and L. A. Sidhu, “Using Phase Change Materials and Air Gaps in Designing Fire Fighting Suits: A Mathematical Investigation,” Fire Technol., vol. 55, no. 1, pp. 363–381, 2019.

    Google Scholar 

  25. D. Dias and J. P. S. Cunha, “Wearable health devices—vital sign monitoring, systems and technologies,” Sensors (Switzerland), vol. 18, no. 8, 2018.

    Google Scholar 

  26. S. Rodrigues, J. S. Paiva, D. Dias, G. Pimentel, M. Kaiseler, and J. P. S. Cunha, “Wearable Biomonitoring Platform for the Assessment of Stress and its Impact on Cognitive Performance of Firefighters: An Experimental Study,” Clin. Pract. Epidemiol. Ment. Heal., vol. 14, no. 1, pp. 250–262, 2018.

    Google Scholar 

  27. Z. Deng, Y. Yu, D. Zou, W. Guan, and L. Yang, “OPTIMIZATION AND IMPLEMENTATION OF A THERMOACOUSTIC FLASHOVER DETECTOR,” MS Thesis, Univ. Maryland, Dep. Fire Prot. Eng., vol. 6, no. 3, 2013.

    Google Scholar 

  28. K. Yun, J. Bustos, and T. Lu, “Predicting rapid fire growth (flashover) using conditional generative adversarial networks,” arXiv, pp. 10–13, 2018.

    Google Scholar 

  29. B. Lattimer et al., “Humanoid Firefighting Robot for Structure Fires,” Interflam 2016, 2016.

    Google Scholar 

  30. T. Chen, H. Yuan, G. Su, and W. Fan, “An automatic fire searching and suppression system for large spaces,” Fire Saf. J., vol. 39, pp. 297–307, 2004.

    Google Scholar 

  31. C. Yuan, Y. Zhang, and Z. Liu, “A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques,” Can. J. For. Res., vol. 45, no. 7, pp. 783–792, 2015.

    Google Scholar 

  32. A. De Santis, B. Siciliano, and L. Villani, “A unified fuzzy logic approach to trajectory planning and inverse kinematics for a fire fighting robot operating in tunnels,” Intell. Serv. Robot., vol. 1, no. 1, pp. 41–49, 2008.

    Google Scholar 

  33. Y. Xin, K. Burchesky, J. de Vries, H. Magistrale, X. Zhou, and S. D’Aniello, “SMART Sprinkler Protection for Highly Challenging Fires—Part 2: Full-Scale Fire Tests in Rack Storage,” Fire Technol., vol. 53, no. 5, pp. 1885–1906, 2017.

    Google Scholar 

  34. Y. Xin, K. Burchesky, J. de Vries, H. Magistrale, X. Zhou, and S. D’Aniello, SMART Sprinkler Protection for Highly Challenging Fires—Part 1: System Design and Function Evaluation, vol. 53, no. 5. Springer US, 2017.

    Google Scholar 

  35. R. James, “Fire Fighting News: Automatic Fire Monitor Systems for Recycling and Water to Energy Plants,” Unifire.com, 2020.

    Google Scholar 

  36. G. Malik, “What if your sprinkler system could do think?,” Sprink. Age, 2018.

    Google Scholar 

  37. P. Liljebäck, Ø. Stavdahl, and A. Beitnes, “SnakeFighter - Development of a water hydraulic fire fighting snake robot,” 9th Int. Conf. Control. Autom. Robot. Vision, 2006, ICARCV ’06, no. 7465, 2006.

    Google Scholar 

  38. J. Hong, B. Min, J. Taylor, V. Raskin, and E. Matson, “NL-Based Communication with Firefighting Robots,” 2012 IEE Int. Conf. Syst. Man, Cybern. Oct. 14-27, COEX, Seoul, Korea, pp. 1461–1466, 2012.

    Google Scholar 

  39. P. Strauss, “Using Drones to Fight Hi-Rise Fires,” Technabob, vol. April, 2020.

    Google Scholar 

  40. J. G. McNeil and B. Y. Lattimer, “Robotic Fire Suppression Through Autonomous Feedback Control,” Fire Technol., vol. 53, no. 3, pp. 1171–1199, 2017.

    Google Scholar 

  41. J. G. McNeil and B. Y. Lattimer, “Autonomous Fire Suppression System for Use in High and Low Visibility Environments by Visual Servoing,” Fire Technol., vol. 52, no. 5, pp. 1343–1368, 2016.

    Google Scholar 

  42. T. Kevan, “Exoskeletons on the Move,” Digit. Eng., vol. December, 2018.

    Google Scholar 

  43. E. Kulisch, “Exoskeleton Could Give Delta Cargo Workers Superhuman Strength (with video),” Air Cargo, vol. January, 2020.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Y. Lattimer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lattimer, B.Y., Hodges, J.L. (2022). Intelligent Firefighting. In: Naser, M., Corbett, G. (eds) Handbook of Cognitive and Autonomous Systems for Fire Resilient Infrastructures. Springer, Cham. https://doi.org/10.1007/978-3-030-98685-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98685-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98684-1

  • Online ISBN: 978-3-030-98685-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics